

Phosphate Reduction and Mitigation (PRAM)

Wetland Calculations Technical Note - Llandysul, Tregaron, and Adpar

Doc Ref: 30192602-ARC-XX-XX-CA-CE-0002-P1

JANUARY 2024

Cronfa **Treftadaeth**

Heritage Fund

Cyngor Sir CEREDIGION County Council

This project is funded by the Nature Networks Programme. It is being delivered by the Heritage Fund, on behalf of the Welsh Government.

Mewn Partneriaeth â Llywodraeth Cymru In Partnership with Welsh Government

Version Control

Version	Date	Author	Checker	Reviewer	Approver
P1	08/01/2024	Elliot Blount- Powell	Matt Brown	Luis Vergara Romero	Renuka Gunasekara

This report dated 08 January 2024 has been prepared for Ceredigion County Council (the "Client") in accordance with the terms and conditions of appointment (the "Appointment") between the Client and **Arcadis (UK) Limited** ("Arcadis") for the purposes specified in the Appointment. For avoidance of doubt, no other person(s) may use or rely upon this report or its contents, and Arcadis accepts no responsibility for any such use or reliance thereon by any other third party.

Contents

1	Introd	uction1
2	Waste	water Treatment Works Summary2
	2.1.1	Phosphorus concentration
	2.1.2	Permitted Flows and Estimated Design Flows
	2.1.3	Summary of WwTW Model Inputs4
3	Initial	Wetland Model Analysis6
3	.1 L	landysul6
	3.1.1	k-C* Model6
	3.1.2	P-K-C* Model9
	3.1.3	Regression13
3	.2 A	dpar18
	3.2.1	k-C* Model18
	3.2.2	P-K-C* Model
	3.2.3	Regression
3	.3 T	regaron24
	3.3.1	k-C* Model
	3.3.2	P-K-C* Model
	3.3.3	Regression
4	Refine	d Wetland Model Analysis
4	.1 L	andysul
4	.2 A	dpar
4	.3 T	regaron
5	Summ	ary33
Арј	oendix /	۹
R	efined	Wetlands Analysis with P-K-C* Model – Llandysul36
Арј	oendix I	3
R	efined	Wetlands Analysis with P-K-C* Model – Adpar37
Арј	oendix (38
R	efined	Wetlands Analysis with P-K-C* Model – Tregaron38

Tables

Table 2-1 Dry Weather Flow Estimation	4
Table 2-2 Influent Concentration and Design Flow Values	4
Table 3-1 Llandysul K-C* Permitted Design Flow Results	6
Table 3-2 Llandysul K-C* Estimated Design Flow Results	8
Table 3-3 Llandysul Permitted Design Flow P-K-C* Results	10
Table 3-4 Llandysul Estimated Design Flow P-K-C* Results	12
Table 3-5 Summary of Regression Model Outputs for Llandysul for Permitted Q	16
Table 3-6 Summary of Regression Model Outputs for Llandysul for Estimated Q	17
Table 3-7 Adpar k-C* Permitted Design Flow Results	18
Table 3-8 Adpar k-C* Estimated Design Flow Results	19
Table 3-9 Adpar Permitted Design Flow P-K-C* Results	20
Table 3-10 Adpar Estimated Design Flow P-K-C* Results	22
Table 3-11 Tregaron k-C* Permitted Design Flow Results	24
Table 3-12 Tregaron k-C* Estimated Design Flow Results	25
Table 3-13 Tregaron Permitted Design Flow P-K-C* Results	26
Table 3-14 Tregaron Estimated Design Flow P-K-C* Results	27
Table 5-1 Summary wetland area requirements and effective removal of TP for Llandysul, Tregaron and Adpar Wetlands.	34

Figures

Figure 2-1: Average Orthophosphate concentration at Llandysul WwTW discharge – July 2021 to 2023	Oct 3
Figure 3-1 TP Regression Curve for Low flow scenario (with DWF of 15.41 m³/day) using Orthophosphate values (Oct 2023 -Oct 2022)	14
Figure 3-2 TP Regression Curve for High flow scenario (with DWF of 79.83 m³/day) using Orthophosphate values (Oct 2023 -Oct 2022)	15
Figure 3-3 TP Regression Curve for Low flow scenario (with DWF of 15.41 m³/day) using Orthophosphate values (Aug 2022 – July 2021)	15
Figure 3-4 TP Regression Curve for High flow scenario (with DWF of 79.83 m³/day) using Orthophosphate values (Aug 2022 -July 2021)	16

Appendices

Appendix A Refined Wetlands Analysis with P-K-C* Model – Llandysul Appendix B Refined Wetlands Analysis with P-K-C* Model – Adpar Appendix C Refined Wetlands Analysis with P-K-C* Model – Tregaron

1 Introduction

Under the Phosphate Reduction and Mitigation (PRAM) project, Arcadis has recently completed outline designs and supporting calculations for Cilgerran and Cenarth wetlands.

In addition, this technical note provides a summary of the estimated preliminary nutrient reductions and wetland area requirements in Llandysul, Tregaron, and Adpar if outline designs are to be undertaken at these locations under future project commissions It is envisaged that these additional wetlands could be potentially used to mitigate a significant portion of the cumulative nutrient budget in the Afon Teifi Special Area of Conservation (SAC) catchment upstream of Cilgerran and Cenarth, as a result of the new homes allocated within the current Ceredigion County Council (CeCC) and Carmarthenshire County Councils revised LDP (rLDP).

This technical note provides a summary of the estimated preliminary nutrient reductions and wetland area requirements using the following approaches:

- The P-K-C* model approach
- A plug flow model termed the k-C* model approach
- Regressions (or exponential decay) equations

P-K-C* Model

The P-K-C* model described in Kadlec and Wallace (2009)¹ is considered to be the most robust approach and is strongly recommended. This model is a 'First Order' reaction model. That is to say, the rate of reaction (the nutrient removal processes) assumed is dependent upon the concentration of the parameter in question. Such a model may be used either to derive a treatment area based upon target performance (load removal or outlet concentration), or else to derive the expected nutrient removal from a wetland with a particular treatment area.

The P-K-C* model is used to calculate the average estimated percentage of remaining contaminants (after treatment), for a given area and hydraulic loading rate (HLR). The parameters P, K and C* describe the way the contaminant of interest is processed within the wetland. C* is the 'background concentration' of a particular parameter, such as Total Phosphorus (TP). The background concentration is a parameter that represents an irreducible concentration that will exist in the water of a wetland that results from internal biogeochemical processes i.e. the contaminant would be present without the addition of the influent. It represents a concentration below which further removal of contaminant is impossible. K is the reaction rate, which describes the speed with which contaminants at any particular concentration (above C*) are removed from incoming water by the wetland. P is a parameter that describes both the hydraulic efficiency of the wetland, and the way in which contaminants 'weather' or breakdown as they pass through the wetland. Note that if contaminants are a mix of chemicals (e.g. TP), some of the chemicals that make up TP will break down more readily than others².

k-C* Model

The k-C* model has been widely applied to the design of treatment wetlands. As with the P-k-C* model, the k-C* model is a first order reaction model that similarly incorporates a background concentration value below which further nutrient removal is not possible.

Regression

There are numerous regression equations proposed in the literature to calculate the removal rates of different parameters, including TP. Different equations will have limitations on their input and output range and the

¹ Kadlec, R.H. and Wallace, S., 2009. Treatment wetlands. CRC press.

² Natural England (June 2022) Framework Approach for Responding to Wetland Mitigation Proposals.

hydrological parameters used. The regression-based model is based on datasets generated from three Integrated Constructed Wetlands (ICWS): Glaslough, County Monaghan, Ireland; Northrepps, Norfolk; and Ingol, Norfolk³. The results of long-term monitoring have been combined to generate an exponential decay curve. The exponential decay curve equation has been used to estimate the size of the wetland required to achieve a desired outlet effluent quality for TP. A TP exponential decay curve has been carried out for a low flow scenario and a high flow scenario

2 Wastewater Treatment Works Summary

2.1.1 Phosphorus concentration

During the PRAM project, Dŵr Cymru Welsh Water (DCWW) provided Orthophosphate sampling data for the treated outflow from the Llandysul Wastewater Treatment Works (WwTWs) for the past 2 years where data exists. Figure 2-1 presents the average Orthophosphate at Llandysul WwTW. These values have been obtained to understand the fluctuations in TP concentrations and how that impacts the wetland area requirements and treatment efficiencies, compared to the 5 mg/l backstop limit, which will be imposed on both WwTWs over the DCWW Investment Programme period (ending 2032). Currently there is no TP permit limit at this WwTW location.

Orthophosphate sampling data was not provided for Adpar and Tregaron WwTW during the PRAM project. However, for Adpar WwTW, the annual average Orthophosphate performance of the final WwTW effluent over the last two years was previously provided during the ongoing Carmarthenshire Specialist Phosphate Advice project: in 2021, the phosphate performance was 4.8 mg/l and in 2022 it was 1.7 mg/l. For Tregaron, no data was provided on the phosphate performance. However, Tregaron WwTW has been designated a new TP permit limit of 2 mg/l, starting 2030 as part of the DCWW Investment Programme.

As a conservative basis, the wetland design calculations were undertaken based on the observed Orthophosphate concentration data (rather than TP observations) for the most recent 12 months period where data exists, but comparison was also made against the proposed 5 mg/l backstop limit for the WwTW outflow to check the implication on the wetland performance.

The average Orthophosphate concentration over the last year (Oct 2022 – Oct 2023) at Llandysul was 1.36 mg/l, and the year before that (Aug 2022 – July 2021) was 2.34 mg/l. As shown in Figure 2-1, there have been no record of incidents where the Orthophosphate concentrations exceed the 5 mg/l backstop limit. Therefore, it is worth considering whether the wetland would realistically receive a concentration of 5 mg/l considering the average is typically half of that. However, reaching 5 mg/l can still potentially occur with the fully permitted Dry Weather Flow (DWF) conditions as more new homes in future Local Development Plans (LDPs) are connected to the WwTW unless more process treatment is provided at the WwTW.

Figure 2-1: Average Orthophosphate concentration at Llandysul WwTW discharge – July 2021 to Oct 2023

Section 2.1.2 below details the DWF estimates and permitted values at Llandysul, Tregaron, and Adpar WwTWs whilst Section 2.1.3 provides a summary of key model inputs.

Section 3 and Section 4 of this technical note then show how the various Orthophosphate concentrations and other model inputs impact wetland requirements and nutrient reduction, for the different modelling approaches used.

2.1.2 Permitted Flows and Estimated Design Flows

Table 2-1 summarises the projected Dry Weather Flow (DWF) from Llandysul, Tregaron, and Adpar WwTW respectively when the proposed site allocations in the Local Development Plan (LDP) accounted for.

In order to calculate the existing and future developments DWF, the following equation has been used:

DWF = PG + I

Where:

P = population

G = water consumption

I = Infiltration rate

	G – Water Consumption	I = Infiltration
Existing Population	50%	144**
New Dwellings	30%*	108***

* irrespective of good construction of infrastructure

** (assuming 90% returned back into sewer) - assumed 160 l/p/d current consumption

*** 120 l/p/d for PCC - 90% returned to sewer

Table 2-1 Dry Weather Flow Estimation

	Existing				Proposed LDP Addition			Predicted Total	
WwTW	Population Equivalent	Consented DWF (m³/day)	Measured Q90 DWF - 2021 (m³/day)	Estimated Existing DWF (m ³ /day)	New Homes	New Population	Extra DWF (m³/day)	Total Population	Total DWF (m³/day)
Llandysul	1534.3	689	326	-	131**	301	42	1836	369
Adpar	1799.3	535	465	-	72***	166	23	1965	488
Tregaron	900	520.4	-	194	74	170	24	1070	218****

*Assumed average household occupancy rate as 2.3

** 5 units in CCC and 126 units in CeCC

*** 37 units in CCC and 35 units in CeCC

**** Measured Q90 DWF is currently not available at Tregaron and therefore the estimated DWF value was used for the baseline.

2.1.3 Summary of WwTW Model Inputs

Table 2-2 summarises the input data into the P-K-C* Model, k-C* and regression models.

Table 2-2 Influent Concentration and Design Flow Values

WwTW	Ci, Influent Concentration (mg/l)*	Q, Design Flow (m³/day)
	1 36 (Oct 2023 to Oct 2022)	689**
	1.50 (061 2023 10 061 2022)	369***
Landveul	2 34 (Aug 2022 to July 2021)	689**
	2.54 (Aug 2022 to Suly 2021)	369***
	5 (backstop TP limit	689**
	concentration)	369***
	1.7 (P. performance 2022)	535**
Adpar		488***
Aupai	4.8 (P. performance 2021)	535**
		488***

WwTW	wTW Ci, Influent Concentration (mg/l)*	
	2 (New TP AMP8 permit limit)	520**
Tregaron		218***
Tegalon	5 (backstop TP limit	520**
	concentration)	218***

*Influent concentration of Total Phosphorus

** Permitted Flow

*** Estimated Flow

For all three WwTWs, the estimated flow is lower than the permitted value. Therefore, the wetland design for this is primarily based on the estimated flow, but the permitted flow was also used for sensitivity testing purpose.

3 Initial Wetland Model Analysis

The following sections present the outcomes of the initial model development for nutrient removal at the proposed wetlands for Llandysul, Tregaron, and Adpar. A summary and interpretation of results is presented in Sections 4 and 5.

3.1 Llandysul

3.1.1 k-C* Model

The plug-flow k-C* model is based on the below equation; with the inputs and results summarised in Table 3-1 and Table 3-2, in which the input values are shaded in grey for clarity.

A=(0.0365*Q/k)*In[(Ci-C*)/Ce-C*)]

Where A= Area (ha), Q=design flow (m³/d), k: apparent rate coefficient (m/year), Ci: inlet TP concentration (gP/m³ or mg/l); C*: background Concentration (mgP/l); Ce=Target Effluent Concentration (mg/l)

The model was run with the following values:

 $C_{o:}$ The target TP concentration for the wetland is 1mg/l.

C*: The wetland background concentration is estimated at 0.05mg/l.

k: The apparent rate coefficient used was 12 m/year.

The analysis is undertaken for three different Ci values (1.36 mg/l, 2.34 mg/l and 5 mg/l) using the fully permitted DWF value of 689 m³/d at the WwTW, as well as the estimated DWF, which could increase the flow entering the wetlands as a result of the proposed allocations under the LDP.

Once the wetland area is calculated, the Hydraulic Retention Time (HRT) was determined using the following equation:

Where HRT (days), V= Wetland Volume (m³), Q=design flow (m³/d)

Table 3-1 Llandysul K-C* Permitted Design Flow Results

Parameter	Design Scenario 1 – See Note 2 Values	Design Scenario 2 – See Note 2 Values	Design Scenario 3 – See Note 3 Values	Unit	Comment
Q	689	689	689	m³/d	Design flow (Permitted Flow) – see Table 2.2 and Note 4
Ci	1.36	2.34	5	gP/m ³ or mg/l	Inlet TP concentration – see Table 2.2
Се	1	1	1	mg/l	Target effluent concentration

Parameter	Design Scenario 1 – See Note 2	Design Scenario 2 – See Note 2	Design Scenario 3 – See Note 3	Unit	Comment	
	Values	Values	Values			
C*	0.05	0.05	0.05	mg/l	Wetland background concentration (estimated value) – see Note 5	
k	12	12	12	m/year	Apparent rate coefficient - see Note 6	
Water depth	0.2	0.2	0.2	m	Treatment water depth – see Note 7	
Total	0.60	1.83	3.53	ha	Estimated wetland area (ha) for the specified Ci and Ce	
area	5,957	18,278	35,283	m²	Estimated wetland area (m ²) for the specified Ci and Ce	
Wetland volume	1,191.4	3,655.6	7,056.5	m ³	Estimated wetland volume (m ³) for the specified Ci and Ce	
Hydraulic Retention Time (HRT)	1.73	5.31	10.24	days	The average time taken for water to pass through a wetland - see Note 8	

Notes

- 1. Design Scenario 1 is based on Ci value of 1.36 mg/l from the observed Orthophosphate values (Oct 2023 Oct 2022), as per Table 2-2
- Design Scenario 2 is based on Ci value of 2.34 mg/l from the observed Orthophosphate values (Aug 2022 - July 2021), as per Table 2-2
- 3. Design Scenario 3 is based on Ci value of 5.0 mg/l from the backstop TP limit, as per Table 2-2 this is a hypothetical scenario mainly for sensitivity testing.
- Design flow for both Design Scenario 1, 2 and 3 is based on the fully permitted DWF of 689 m³/d, as per Table 2-2
- 5. C* value of 0.05 mg/l is assumed, as per Wetland Feasibility, Design and Offsetting: Wetland Development on the River Wye SAC Titley Report (July 2022) by The Wye & Usk Foundation
- Apparent rate coefficient is assumed as 12 m/year, as per Wetland Feasibility, Design and Offsetting: Wetland Development on the River Wye SAC – Titley Report (July 2022) by The Wye & Usk Foundation

- 7. Treatment depth is taken as 0.2 m, as per Natural England (June 2022) Framework Approach for Responding to Wetland Mitigation Proposals
- Design and Offsetting: Wetland Development on the River Wye SAC Titley Report (July 2022) by The Wye & Usk Foundation sates to achieve <1 mg/I TP a minimum HRT of 6.5 days is required. Natural England (June 2022) Framework Approach for Responding to Wetland Mitigation Proposals states HRT is scheme dependent and typically 12-24hrs may be needed.

Parameter	Design Scenario 1 – See Note 2	Design Scenario 2 – See Note 2 3 Design Scenario 3 – See Note 3		Unit	Comment	
	Values	Values	Values			
Q	369	369	369	m³/d	Design flow (Permitted Flow) – see Table 2.2 and Note 4	
Ci	1.36	2.34	5	gP/m ³ or mg/l	Inlet TP concentration - see Table 2.2	
Ce	1	1	1	mg/l	Target effluent concentration	
C*	0.05	0.05	0.05	mg/l	Wetland background concentration (estimated value) – see Note 5	
k	12	12	12	m/year	Apparent rate coefficient - see Note 6	
Water depth	0.2	0.2	0.2	m	Treatment water depth – see Note 7	
Total	0.32	0.98	1.89	ha	Estimated wetland area (ha) for the specified Ci and Ce	
area	3,190	9,789	18,896	m²	Estimated wetland area (m ²) for the specified Ci and Ce	
Wetland volume	638.1	1,957.8	3,779.2	m ³	Estimated wetland volume (m ³) for the specified Ci and Ce	
Hydraulic Retention Time (HRT)	1.73	5.31	10.24	days	The average time taken for water to pass through a wetland - see Note 8	

Table 3-2 Llandysul K-C* Estimated Design Flow Results

Notes

- 1. Design Scenario 1 is based on Ci value of 1.36 mg/l from the observed Orthophosphate values (Oct 2023 Oct 2022), as per Table 2-2
- 2. Design Scenario 2 is based on Ci value of 2.34 mg/l from the observed Orthophosphate values (Aug 2022 July 2021), as per Table 2-2
- 3. Design Scenario 3 is based on Ci value of 5.0 mg/l from the backstop TP limit, as per Table 2-2 this is a hypothetical scenario mainly for sensitivity testing.
- Design flow for both Design Scenario 1, 2 and 3 is based on the estimated DWF of 369 m³/d, as per Table 2-2
- 5. C* value of 0.05 mg/l is assumed, as per Wetland Feasibility, Design and Offsetting: Wetland Development on the River Wye SAC Titley Report (July 2022) by The Wye & Usk Foundation
- Apparent rate coefficient is assumed as 12 m/year, as per Wetland Feasibility, Design and Offsetting: Wetland Development on the River Wye SAC – Titley Report (July 2022) by The Wye & Usk Foundation
- 7. Treatment depth is taken as 0.2 m, as per Natural England (June 2022) Framework Approach for Responding to Wetland Mitigation Proposals
- Design and Offsetting: Wetland Development on the River Wye SAC Titley Report (July 2022) by The Wye & Usk Foundation sates to achieve <1 mg/l TP a minimum HRT of 6.5 days is required. Natural England (June 2022) Framework Approach for Responding to Wetland Mitigation Proposals states HRT is scheme dependent and typically 12-24 hrs may be needed.

3.1.2 P-K-C* Model

The P-K-C^{*} Model builds on the results of the k-C^{*} model results shown in Table 3-1 and Table 3-2, specifically the total wetland area, which is used the derive the hydraulic loading rate (q) (m/yr).

The P-K-C model is defined as¹:

$$\frac{C_{e} - C^{*}}{C_{i} - C^{*}} = \left[\begin{array}{c} 1 + \frac{k}{Pq} \right]^{-P}$$

C_i = Influent concentration of contaminant (mg/l) C_e = Effluent concentration of contaminant (mg/l) C* = Background concentration of contaminant (in the wetland water column) (mg/l) k = Rate coefficient for reduction of contaminant (m/yr) P = Apparent no. of tanks in series (PTIS – dimensionless) q = Hydraulic loading rate (m/yr)

Table 3-3 summarises the P-K-C* inputs and outputs for the permitted Q(Orthophosphate Oct 2023 – Oct 2022 scenario), and the permitted Q (Orthophosphate August 2022 – July 2021) and the permitted Q (5 mg/l backstop limit). Table 3-4 summarises the inputs and outputs for estimated Q with the same three scenarios. The input values are shaded in grey for clarity and Italic text in italics are information related calculating hydraulic loading rate (q).

Table 3-3 Llandysul Permitted Design Flow P-K-C* Results

Parameter	Design Scenario – See Note 1 Value	Design Scenario 2 – See Note 2 Value	Design Scenario 3 – See Note 3 Value	Unit	Comment
Ci	1.36	2 34	5	ma/l	Influent concentration of
		2.01			Table 2.2
C*	0.022	0.022	0.022	mg/l	Background concentration of Total Phosphorus (estimated value) – see Note 4
Р	2	2	2	-	Apparent no. of tanks in series
k	10	10	10	m/yr	Rate coefficient for reduction of Total Phosphorus – see Note 5
Design Flow	689	689	689	m³/d	Design flow (Permitted Flow) – see Table 2.2 and Note 6
Total annual hydraulic throughput	251,485	251,485	251,485	m³/yr	Design Flow (m³/d) X 365
Total wetland area	5,957	18,278	35,283	<i>m</i> ²	Active cell area (i.e. excluding diving berms, spreader channels and level control structures) – directly taken from Table 3-1 (from k-C* Model) for each Design Scenario
q	42.217	13.759	7.128	m/yr	Hydraulic loading rate = Total annual hydraulic throughput (m ³ /yr) / Total wetland area (m ²)
Amount of remaining contaminant.	1.07	1.25	1.41	mg/l	NB. treated discharge from the wetland cannot
Ce - C*	79.94	53.80	28.34	%	be less than the background

Parameter	Design Scenario – See Note 1 Value	Design Scenario 2 – See Note 2 Value	Design Scenario 3 – See Note 3 Value	Unit	Comment
					concentrations, as it is not possible to achieve i.e. background concentration will always be present
Treatment efficiency of wetland	20.06	46.20	71.66	%	% of contaminant removed

Notes:

- 1. Design Scenario 1 is based on Ci value of 1.36 mg/l from the observed Orthophosphate values (Oct 2023 Oct 2022), as per Table 2.2
- 2. Design Scenario 2 is based on Ci value of 2.34 mg/l from the observed Orthophosphate values (Aug 2022 July 2021), as per Table 2.2
- 3. Design Scenario 3 is based on Ci value of 5.0 mg/l from the backstop TP limit, as per Table 2.2 this is a hypothetical scenario mainly for sensitivity testing.
- 4. C* value of 0.022 mg/l is assumed, based on Kadlec & Wallace report (2009) for the median flow-weighted TP concentration in 85 relatively undeveloped basins of the United States. It also states levels are very low in Florida Everglades, often in the range of 0.006-0.010. Free Water Surface (FWS) wetlands receiving low strength wastewater. Kadlec & Wallace report (2009) also advises C* typical values of 0.010 0.040 mg/l for rainfall driven FWS systems.
- 5. For total phosphorus (TP) reduction, Kadlec & Wallace report (2009) advises that adjustment of the rate constant using a temperature coefficient , Θ , is not a good model with the equation $k_T = k_{20}\Theta(^{T-20})$ where T is the operating temperature. Studies of FWS wetlands in cold climates gave a median value of 0.986, meaning that the rate constant decreased with increasing temperature. It is therefore more appropriate to look at actual rate constants from existing FWS wetlands. Kadlec & Wallace report that the median rate constant for 282 studied wetlands was 10.0 m/yr.
- Design flow for the Design Scenarios 1, 2 and 3 are based on the fully permitted DWF of 689 m³/d, as per Table 2.2

Table 3-4 Llandysul Estimated Design Flow P-K-C* Results

Parameter	Design Scenario – See Note 1	Design Scenario 2 – See Note 2	Design Scenario 3 – See Note 3	Unit	Comment
	Value	Value	Value		
C _i .	1.36	2.34	5	mg/l	Influent concentration of Total Phosphorus - see Table 2.2
C*	0.022	0.022	0.022	mg/l	Background concentration of Total Phosphorus (estimated value) – see Note 4
Р	2	2	2	-	Apparent no. of tanks in series
k	10	10	10	m/yr	Rate coefficient for reduction of Total Phosphorus – see Note 5
Design Flow	369	369	369	m³/d	Design flow (Permitted Flow) – see Table 2.2 and Note 6
Total annual hydraulic throughput	134,685	134,685	134,685	m³/yr	Design Flow (m³/d) X 365
Total wetland area	3,190	9,789	18,896	<i>m</i> ²	Active cell area (i.e. excluding diving berms, spreader channels and level control structures) – directly taken from Table 3-1 (from k-C* Model) for each Design Scenario
q	42.218	13.759	7.128	m/yr	Hydraulic loading rate = Total annual hydraulic throughput (m ³ /yr) / Total wetland area (m ²)
Amount of remaining contaminant.	1.07	1.25	1.72	mg/l	NB. treated discharge from the wetland cannot
Ce - C*	79.94	53.80	34.54	%	be less than the background

Parameter	Design Scenario – See Note 1 Value	Design Scenario 2 – See Note 2 Value	Design Scenario 3 – See Note 3 Value	Unit	Comment
					concentrations, as it is not possible to achieve i.e. background concentration will always be present
Treatment efficiency of wetland	20.06	46.20	65.46	%	% of contaminant removed

Notes:

- 1. Design Scenario 1 is based on Ci value of 1.36 mg/l from the observed Orthophosphate values (Oct 2023 Oct 2022), as per Table 2.2
- 2. Design Scenario 2 is based on Ci value of 2.34 mg/l from the observed Orthophosphate values (Aug 2022 July 2021), as per Table 2.2
- 3. Design Scenario 3 is based on Ci value of 5.0 mg/l from the backstop TP, as per Table 2.2 – this is a hypothetical scenario mainly for sensitivity testing.
- C* value of 0.022 mg/l is assumed, based on Kadlec & Wallace report (2009) for the median flowweighted TP concentration in 85 relatively undeveloped basins of the United States. It also states levels are very low in Florida Everglades, often in the range of 0.006-0.010. FWS wetlands receiving low strength wastewater. Kadlec & Wallace report (2009) also advises C* typical values of 0.010 – 0.040 mg/l for rainfall driven FWS systems.
- 5. For total phosphorus (TP) reduction, Kadlec & Wallace report (2009) advises that adjustment of the rate constant using a temperature coefficient ,Θ, is not a good model with the equation k_T = k₂₀θ(^{T-20)} where T is the operating temperature. Studies of Free Water Surface (FWS) wetlands in cold climates gave a median value of 0.986, meaning that the rate constant decreased with increasing temperature. It is therefore more appropriate to look at actual rate constants from existing FWS wetlands. Kadlec & Wallace report that the median rate constant for 282 studied wetlands was 10.0 m/yr.
- Design flow for Design Scenarios 1, 2 and 3 are based on the estimated DWF of 369 m³/d, as per Table 2.2

3.1.3 Regression

The regression results below are based on the phosphorus exponential curves shown in The Wye & Usk Foundation (July 2022) Wetland Feasibility, Design and Offsetting³. The results below are therefore an interpretation of those results rather than based on a published equation. Further research undertaken to date could not find a regression equation specific for wetland P removal. Therefore, there is low confidence in the results below and these should not be used for design purposes.

The inputs into the Regression model are based on the Orthophosphate values shown in Section 2.1.1 for the period between Oct 2023 - July 2021. Figure 3-1 and Figure 3-2 show derived TP exponential decay curve for a wetland under a low flow scenario and a high flow scenario for the average Orthophosphate concentration between Oct 2023 – Oct 2023. Figure 3-3 and Figure 3-4 show the derived TP exponential decay curve for a wetland under a low flow scenario and a high flow scenario for the average Orthophosphate concentration between August 2022 – July 2021.

However, one of the main limitations of this exercise is that the regression equation used in the analysis is based on a DWF of much lower value of circa 15 m^3 /day and TP level 5.6 mg/l for the low flow scenario and 79.83 m³/day and TP of 2.82 mg/l for the high flow scenario.

Therefore, the initial estimated wetland area was then normalised with the fully permitted design flow (689 m³/day) and estimated design flow (369 m³/day) to recalculate the wetland areas for low flow and high flow scenarios, as shown in Table 3-5. Table 3-6 summarises the wetland area requirements for the Estimated Design Flow, based on the Orthophosphate data set being used.

Figure 3-1 TP Regression Curve for Low flow scenario (with DWF of 15.41 m³/day) using Orthophosphate values (Oct 2023 -Oct 2022)

Figure 3-2 TP Regression Curve for High flow scenario (with DWF of 79.83 m³/day) using Orthophosphate values (Oct 2023 -Oct 2022)

Figure 3-3 TP Regression Curve for Low flow scenario (with DWF of 15.41 m³/day) using Orthophosphate values (Aug 2022 – July 2021)

Figure 3-4 TP Regression Curve for High flow scenario (with DWF of 79.83 m³/day) using Orthophosphate values (Aug 2022 -July 2021)

Pagression	Permitted Q , Orthophosphate data (Oct 2023 - Oct 2022)		Permitted Q , Orthophosphate data (Aug 2022 - July 2021)		
Regression	Low Flow Scenario	High Flow Scenario	Low Flow Scenario	High Flow Scenario	
Desired TP value (mg TP/I)	1	1	1	1	
Initially Estimated Wetland Area (m ²)	830.9	2,918.1	764.5	2,340.9	
Normalised Wetland Area (m²)*	37,148	130,471	34,180	104,662	

* The Normalised Wetland Area (m^2) is calculated by multiplying the Estimated Wetland Area with the ratio of Permitted Flow (689 m³/d) and mean flow used in the Titley Regression curve (15.41 m³/d).

Regression	Estimated Q , Orthophosphate data (Oct 2023 - Oct 2022)		Estimated Q , Orthophosphate data (Aug 2022 - July 2021)		
	Low Flow Scenario	High Flow Scenario	Low Flow Scenario	High Flow Scenario	
Desired TP value (mg TP/I)	1	1	1	1	
Initially Estimated Wetland Area (m ²)	830.9	2,918.1	764.5	2,340.9	
Normalised Wetland Area (m²)*	19,895.5	69,875	18,306	56,053	

Table 3-6 Summary of Regression Model Outputs for Llandysul for Estimated Q

* The Normalised Wetland Area (m^2) is calculated by multiplying the Estimated Wetland Area with the ratio of Estimated Flow (369 m³/d) and mean flow used in the Titley Regression curve (15.41 m³/d).

3.2 Adpar

As discussed in Section 2.1.1, no data was provided on the Orthophosphate concentrations or phosphate performance at Adpar WwTW. However, the average P performance over the last two years at Adpar WwTW were provided. Also, as discussed in 2.1.2, the projected DWF, as a result of the proposed allocations under the LDP could increase the flow entering the wetlands. Therefore, a number of calculations have been undertaken to understand the impact of the design and estimated flow, against the different Orthophosphate concentrations.

3.2.1 k-C* Model

As discussed in Section 3.1.1, the following are the same across all the models and therefore, Table 3-7 and Table 3-8 only present the other specific parameters and outputs related to the Adpar WwTW:

- K = 12 m/year
- C* = 0.05 mg/l
- Water depth = 0.20 m

Table 3-7 Adpar k-C* Permitted Design Flow Results

Parameter	Design Scenario 1 – See Note 1 Values	Design Scenario 2 – See Note 2 Values	Unit	Comment
Q	535	535	m³/d	Design flow (Permitted Flow) - see Table 2.2 and Note 3
Ci	1.7	4.8	gP/m ³	Inlet TP concentration – see Table 2.2
Се	1	1	mg/l	Target effluent concentration
Total wetland	0.86	2.67	ha	Estimated wetland area (ha) for the specified Ci and Ce
area	8,578	26,690	m²	Estimated wetland area (m ²) for the specified Ci and Ce
Wetland volume	1,715.6	5,338.0	m ³	Estimated wetland volume (m ³) for the specified Ci and Ce
Hydraulic Retention Time (HRT)	3.21	9.98	days	The average time taken for water to pass through a wetland - see Note 3

Notes:

- 1. Design Scenario 1 is based on Ci value of the average P performance (2022) of 1.7 mg/l, as per Table 2.2
- 2. Design Scenario 2 is based on Ci value of the average P performance (2021) of 4.8 mg/l, as per Table 2.2. The 5mg/l backstop limit scenario was not specifically analysed considering that 4.8 mg/l already gives a very clear indication of this. Furthermore, in 2022 P performance of the WwTW outflow has significantly improved, therefore 5 mg/l (median value) is unlikely to be exceeded in any case.
- Design flow for both scenarios is based on the fully permitted DWF of 535 m³/d, as per Table 2.2 this is undertaken mainly for sensitivity purposes, should the full permitted flow be treated in the future.
- 4. Design and Offsetting: Wetland Development on the River Wye SAC Titley Report (July 2022) by The Wye & Usk Foundation sates to achieve <1 mg/l TP a minimum HRT of 6.5 days is required. Natural England (June 2022) Framework Approach for Responding to Wetland Mitigation Proposals states HRT is scheme dependent and typically 12-24 hrs may be needed.

Parameter	Design Scenario 1 – See Note 1 Values	Design Scenario 2 – See Note 2 Values	Unit	Comment
	Values	Values		
Q	488	488	m³/d	Design flow (Estimated Flow) - see Table 2.2 and Note 3
Ci	1.7	4.8	gP/m ³	Inlet TP concentration – see Table 2.2
Се	1	1	mg/l	Target effluent concentration
Total wetland	0.78	2.43	ha	Estimated wetland area (ha) for the specified Ci and Ce
area	7,824	24,345	m²	Estimated wetland area (m ²) for the specified Ci and Ce
Wetland volume	1,564.9	4,869.1	m ³	Estimated wetland volume (m ³) for the specified Ci and Ce
Hydraulic Retention Time (HRT)	3.21	9.98	days	The average time taken for water to pass through a wetland - see Note 4

Table 3-8 Adpar k-C* Estimated Design Flow Results

Notes:

- 1. Design Scenario 1 is based on Ci value of the average P performance (2022) of 1.7 mg/l, as per Table 2.2
- 2. Design Scenario 1 is based on Ci value of the average P performance (2021) of 4.8 mg/l, as per Table 2.2. The 5mg/l backstop limit scenario was not specifically analysed considering that 4.8 mg/l already gives a very clear indication of this. Furthermore, in 2022 P performance of the WwTW outflow has significantly improved, therefore 5 mg/l (median value) is unlikely to be exceeded in any case.
- 3. Design flow for both scenarios is based on the estimated DWF of 488 m³/d, as per Table 2.2
- 4. Design and Offsetting: Wetland Development on the River Wye SAC Titley Report (July 2022) by The Wye & Usk Foundation sates to achieve <1 mg/l TP a minimum HRT of 6.5 days is required. Natural England (June 2022) Framework Approach for Responding to Wetland Mitigation Proposals states HRT is scheme dependent and typically 12-24 hrs may be needed.

3.2.2 P-K-C* Model

As discussed in Section 3, the following parameters are standard across all the P-K-C models and therefore are not presented in Table 3-9 and Table 3-10 below:

- C* = 0.022
- k = 10
- θ- = 0.986
- Water depth = 0.20 m

Table 3-9 Adpar Permitted Design Flow P-K-C* Results

Parameter	Design Scenario 1 – See Note 1 Values	Design Scenario 2 – See Note 2 Values	Unit	Comment
Ci-	1.7	4.8	mg/l	Influent concentration of Total Phosphorus - see Table 2.2
Р	2	2	-	Apparent no. of tanks in series
Design Flow	535	535	m³/d	Design flow (Permitted Flow) – see Table 2.2 and Note 3
Total annual hydraulic throughput	195,275	195,275	m³/yr	Design Flow (m3/d) X 365
Total wetland area	26,690	8,578	<i>m</i> ²	<i>Active</i> cell area (i.e. excluding diving berms, spreader channels and level control

Parameter	Design Scenario 1 – See Note 1 Values	Design Scenario 2 – See Note 2 Values	Unit	Comment
				structures) – directly taken from Table 3-4 (from k-C* Model) for each Design Scenario
q	7.31	22.76	m/yr	Hydraulic loading rate = Total annual hydraulic throughput (m ³ /yr) / Total wetland area (m ²)
Amount of remaining contaminant, Ce - C*	1.13	1.69	mg/l	NB. treated discharge from the wetland cannot be less than
	67.223	35.29	%	the background concentrations, as it is not possible to achieve i.e. background concentration will always be present
Treatment efficiency of wetland	32.77	64.71	%	% of contaminant removed

Notes

- 1. Design Scenario 1 is based on Ci value of the average P performance (2022) of 1.7 mg/l, as per Table 2.2.
- 2. Design Scenario 1 is based on Ci value of the average P performance (2021) of 4.8 mg/l, as per Table 2.2. The 5mg/l backstop limit scenario was not specifically analysed considering that 4.8 mg/l already gives a very clear indication of this. Furthermore, in 2022 P performance of the WwTW outflow has significantly improved, therefore 5 mg/l (median value) is unlikely to be exceeded in any case.
- 3. Design flow for both scenarios is based on the fully permitted DWF of 535 m³/d, as per Table 2.2

Table 3-10 Adpar Estimated Design Flow P-K-C* Results

Parameter	Design Scenario 1 – See Note 1 Values	Design Scenario 2 – See Note 2 Values	Unit	Comment
Ci	1.7	4.8	mg/l	Influent concentration of Total Phosphorus - see Table 2.2
Р	2	2	-	Apparent no. of tanks in series
Design Flow	488	488	m³/d	Design flow (Estimated Flow) – see Table 2.2 and Note 4
Total annual hydraulic throughput	178,120	178,120	m³/yr	Design Flow (m³/d) X 365
Total wetland area	7,824	24,345	m²	Active cell area (i.e. excluding diving berms, spreader channels and level control structures) – directly taken from Table 3-4 (from k-C* Model) for each Design Scenario
q	22.77	7.32	m/yr	Hydraulic loading rate = Total annual hydraulic throughput (m ³ /yr) / Total wetland area (m ²)
Amount of remaining contaminant,	1.13	1.69	mg/l	NB. treated discharge from the wetland cannot be less than the background concentrations, as it is not
Ce - C*	67.23	35.29	%	possible to achieve i.e. background concentration will always be present
Treatment efficiency of wetland	32.77	64.71	%	% of contaminant removed

Notes:

- 1. Design Scenario 1 is based on Ci value of the average P performance (2022) of 1.7 mg/l, as per Table 2.2
- 2. Design Scenario 1 is based on Ci value of the average P performance (2021) of 4.8 mg/l, as per Table 2.2. The 5mg/l backstop limit scenario was not specifically analysed considering that 4.8 mg/l already gives a very clear indication of this. Furthermore, in 2022 P performance of the WwTW outflow has significantly improved, therefore 5 mg/l (median value) is unlikely to be exceeded in any case.
- 3. Design flow for both scenarios is based on the estimated DWF of 535 m³/d, as per Table 2.2

3.2.3 Regression

As discussed in Section 2, there is no Orthophosphate data for Adpar WwTW. Therefore, the Regression model cannot be undertaken.

3.3 Tregaron

As discussed in Section 2.1.1, no data was provided on the Orthophosphate concentrations or phosphate performance at Tregaron WwTW. However, Tregaron WwTW has been designated a new TP permit limit of 2mg/l, starting 2030 as part of the DCWW Investment Programme. Also, as discussed in 2.1.2, the projected DWF, as a result of the proposed allocations under the LDP could increase the flow entering the wetlands. Therefore, a number of calculations have been undertaken to understand the impact of the design and estimated flow, against the different Orthophosphate concentrations.

3.3.1 k-C* Model

As discussed in Section 3.1.1, the following are the same across all the models and therefore, Table 3-11 and Table 3-12 only present the other specific parameters and outputs related to the Tregaron WwTW:

- K = 12 m/year
- C* = 0.05 mg/l
- Water depth = 0.20 m

Table 3-11 Tregaron k-C* Permitted Design Flow Results

Parameter	Design Scenario 1 – See Note 1 Values	Design Scenario 2 – See Note 2 Values	Unit	Comment
Q	520	520	m³/d	Design flow (Permitted Flow) - see Table 2.2 and Note 3
Ci	2	5	gP/m ³	Inlet TP concentration – see Table 2.2
Се	1	1	mg/l	Target effluent concentration
Total wetland	1.11	2.66	ha	Estimated wetland area (ha) for the specified Ci and Ce
area	11,119	26,628	m ²	Estimated wetland area (m ²) for the specified Ci and Ce
Wetland volume	2,223.8	5,325.7	m ³	Estimated wetland volume (m ³) for the specified Ci and Ce
Hydraulic Retention Time (HRT)	4.28	10.24	days	The average time taken for water to pass through a wetland - see Note 4

Notes:

- 1. Design Scenario 1 is based on Ci value of new TP permit limit of 2.0 mg/l, as per Table 2.2
- 2. Design Scenario 2 is based on Ci value of 5.0 mg/l from the backstop TP, as per Table 2.2 this is a hypothetical scenario mainly for sensitivity testing.
- 3. Design flow for both scenarios is based on the fully permitted DWF of 520 m³/d, as per Table 2.2
- 4. Design and Offsetting: Wetland Development on the River Wye SAC Titley Report (July 2022) by The Wye & Usk Foundation sates to achieve <1 mg/I TP a minimum HRT of 6.5 days is required. Natural England (June 2022) Framework Approach for Responding to Wetland Mitigation Proposals states HRT is scheme dependent and typically 12-24 hrs may be needed.

Table 3-12 Tregaron k-C* Estimated Design Flow Results

Parameter	Design Scenario 1 - See Note 1Design Scenario 2 - See Note 2UnitValuesValues		Unit	Comment
Q	218	218	m³/d	Design flow (Estimated Flow) - see Table 2.2 and Note 3
Ci	2	5	gP/m ³	Inlet TP concentration – see Table 2.2
Се	1	1	mg/l	Target effluent concentration
Total wetland	0.47	1.12	ha	Estimated wetland area (ha) for the specified Ci and Ce
area	4,661	11,163	m²	Estimated wetland area (m²) for the specified Ci and Ce
Wetland volume	932.3	2,232.7	m ³	Estimated wetland volume (m ³) for the specified Ci and Ce
Hydraulic Retention Time (HRT)	4.28	10.24	days	The average time taken for water to pass through a wetland - see Note 4

Notes:

- 1. Design Scenario 1 is based on Ci value of new TP permit limit of 2.0 mg/l, as per Table 2.2
- 2. Design Scenario 2 is based on Ci value of 5.0 mg/l from the backstop TP, as per Table 2.2 this is a hypothetical scenario mainly for sensitivity testing.
- 3. Design flow for both scenarios is based on the estimated DWF of 218 m³/d, as per Table 2.2
- 4. Design and Offsetting: Wetland Development on the River Wye SAC Titley Report (July 2022) by The Wye & Usk Foundation sates to achieve <1 mg/l TP a minimum HRT of 6.5 days is required. Natural England (June 2022) Framework Approach for Responding to Wetland Mitigation Proposals states HRT is scheme dependent and typically 12-24 hrs may be needed.

3.3.2 P-K-C* Model

As discussed in Section 3, the following parameters are standard across all the P-K-C* models and therefore are not presented in Table 3-13 and Table 3-14 below:

- C* = 0.022
- k = 10
- θ- = 0.986
- Water depth = 0.20 m

Table 3-13 Tregaron Permitted Design Flow P-K-C* Results

Parameter	Design Scenario 1 – See Note 1 Values	Design Scenario 2 – See Note 2 Values	Unit	Comment
C _i .	2	5	mg/l	Influent concentration of Total Phosphorus - see Table 2.2
Р	2	2	-	Apparent no. of tanks in series
Design Flow	520	520	m³/d	Design flow (Permitted Flow) – see Table 2.2 and Note 3
Total annual hydraulic throughput	189,800	189,800	m³/yr	Design Flow (m³/d) X 365
Total wetland area	11,119	26,628	<i>m</i> ²	Active cell area (i.e. excluding diving berms, spreader channels and level control structures) – directly taken from Table 3-4 (from k-C* Model) for each Design Scenario
q	17.07	7.13	m/yr	Hydraulic loading rate = Total annual hydraulic throughput

Parameter	Design Scenario 1 – See Note 1 Values	Design Scenario 2 – See Note 2 Values	Unit	Comment		
				(m³/yr) / Total wetland area (m²)		
Amount of remaining	1.18	1.72	mg/l	NB. treated discharge from the wetland cannot be less than		
contaminant, Ce - C*	59.82	34.54	%	the background concentrations, as it is not possible to achieve i.e. background concentration will always be present		
Treatment efficiency of wetland	40.18	65.46	%	% of contaminant removed		

Notes

- 1. Design Scenario 1 is based on Ci value of new TP permit limit of 2.0 mg/l, as per Table 2.2
- 2. Design Scenario 2 is based on Ci value of 5.0mg/l from the backstop TP, as per Table 2.2 this is a hypothetical scenario mainly for sensitivity testing.
- 3. Design flow for both scenarios is based on the fully permitted DWF of 520 m³/d, as per Table 2.2

Table 3-14 Tregaron Estimated Design Flow P-K-C* Results

Parameter	Design Scenario 1 – See Note 1 Values	Design Scenario 2 – See Note 2 Values	Unit	Comment
Ci	2	5	mg/l	Influent concentration of Total Phosphorus - see Table 2.2
Р	2	2	-	Apparent no. of tanks in series

Parameter	Design Scenario 1 – See Note 1 Values	Design Scenario 2 – See Note 2 Values	Unit	Comment		
Design Flow	218	218	m³/d	Design flow (Estimated Flow) – see Table 2.2 and Note 4		
Total annual hydraulic throughput	79,570	79,570	m³/yr	Design Flow (m³/d) X 365		
Total wetland area	4,661	11,163	m²	Active cell area (i.e. excluding diving berms, spreader channels and level control structures) – directly taken from Table 3-4 (from k-C* Model) for each Design Scenario		
q	17.07	7.13	m/yr	Hydraulic loading rate = Total annual hydraulic throughput (m ³ /yr) / Total wetland area (m ²)		
Amount of remaining contaminant, Ce - C*	1.18	1.72	mg/l	NB. treated discharge from the wetland cannot be less than the background concentrations, as it is not		
	59.82	34.54		possible to achieve i.e. background concentration will always be present		
Treatment efficiency of wetland	40.18	65.46	%	% of contaminant removed		

Notes:

- 1. Design Scenario 1 is based on Ci value of new TP permit limit of 2.0 mg/l, as per Table 2.2
- 2. Design Scenario 2 is based on Ci value of 5.0 mg/l from the backstop TP, as per Table 2.2 this is a hypothetical scenario mainly for sensitivity testing.
- 3. Design flow for both scenarios is based on the estimated DWF of 218 m^3/d , as per Table 2.2

3.3.3 Regression

As discussed in 2, there is no Orthophosphate data for Tregaron WwTW. Therefore, the Regression model cannot be undertaken.

4 Refined Wetland Model Analysis

Section 4 presents the further results from the P-K-C* model, which was deemed to provide the most robust approach. The results are based on larger wetland sizes currently being identified for the ongoing Carmarthenshire Action Plan (as part of the Carmarthenshire Specialist phosphate Advice project).

Wetland areas used in this final P-K-C* modelling exercise to estimate the wetland removal % efficiencies have been informed by the initial values obtained (in Section 3) from the K-C* model to achieve the intended 1 mg/l effluent outlet concentration.

Section 4.1, 4.2 and 4.3 present a summary of the P-K-C* model results for the Llandysul, Adpar and Tregaron wetlands respectively and the complete results can be found in Appendix A, Appendix B and Appendix C respectively.

These refined calculations in Section 4 are performed on the basis of having a minimum of six wetland cells at each WwTW location. On the other hand, the preliminary calculations in Section 3 are done on the basis of just two wetland cells at each WwTW location.

During the period of January to March, it was assumed that winter maintenance activities may be performed, which may reduce the available wetland treatment area by up to 50%, causing a lowered wetland performance. Therefore, effective annual TP removal quantities were also presented to reflect this possibility alongside the normal annual TP removal quantities for comparison. They show that the predicted outlet effluent quality following the wetland treatment is broadly as shown below when they are operating at an optimum level (without any winter wetland maintenance activities).

Current Wetland Scheme performance (see note below):

- At Llandysul 0.5 to 1.0 mg/l
- At Tregaron 0.5 to 1.0 mg/l
- At Adpar 1.0 mg/l

Also note that the above wetland outlet effluent quality values are based on the estimated WwTW DWF and the most recent observed inlet concentration values from the WwTW treated effluent (i.e. rather than the fully permitted DWF and backstop TP limit values, which were mainly used for sensitivity scenario testing purposes only). However, since observed concentration values are not available at Tregaron the 2mg/I AMP8 permit level was provisionally used for the wetland inlet concentration at this stage, but the observed values should be used to refine the current estimates.

4.1 Llandysul

			P-K-C* model - 100% performance (Januar) March)		lel – 50% Effective ce (Jan – Annual TP removal		P-K-C* model - 100% performance	P-K-C*model - 50% performance (Jan - March)				
	Ci (mg/l)	Q (m3/dav)	Wetland	Volume	HRT (days)	Removal efficiency (%)	Annual Tp removal	Removal efficiency (%)	Annual Tp removal	Annual TP removal (kg/yr)	Final Effluent TP	Final Effluent TP
	1.36	(113/day) 689	2.000	4000	(uays) 5.81	52.61	179.94	31.96	26.95	161.91	0.64	0.93
	1.36	369	2.000	4000	10.84	73.47	134.58	50.34	22.74	123.67	0.36	0.66
Llandvsul	2.34	689	2.000	4000	5.81	52.61	309.60	31.96	46.38	278.57	1.11	1.59
,	2.34	369	2.000	4000	10.84	73.47	231.55	50.34	39.12	212.78	0.62	1.15
	5	689	2.000	4000	5.81	52.61	661.53	31.96	99.09	595.24	2.37	3.40
	5	369	2.000	4000	10.84	73.47	494.77	50.34	83.59	454.66	1.32	2.47

4.2 Adpar

						P-K-C* mod performanc	C* model - 100% performance (Jan – March)		Effective Annual TP removal	P-K-C* model - 100% performance	P-K-C*model - 50% performance (Jan - March)	
	Ci (mg/l)	Q (m³/day)	Wetland (ha)	Volume (m³)	HRT (days)	Removal efficiency (%)	Annual Tp removal (Kg/year)	Removal efficiency (%)	Annual Tp removal (Kg/year)	Annual TP removal (kg/yr)	Final Effluent TP (mg/l)	Final Effluent TP (mg/l)
	1.7	535	1.0	2,000	3.74	38.82	128.87	22.18	18.16	114.81	1.04	1.32
Advacu	1.7	488	1.0	2,000	4.10	41.53	125.75	23.99	17.91	112.23	0.99	1.29
Aapar												
	4.8	535	1.0	2,000	3.74	38.82	363.87	22.18	51.26	324.16	2.94	3.74
	4.8	488	1.0	2,000	4.10	41.53	355.07	23.99	50.57	316.88	2.81	3.65
4.3 Tregaron

						P-K-C* moo performane	lel - 100% ce	P-K-C* model – 50% performance (Jan – March)		Effective Annual TP removal		P-K-C* model - 100% performance	P-K-C*model - 50% performance (Jan - March)
	Ci (mg/l)	Q (m³/day)	Wetland (ha)	Volume (m³)	HRT (days)	Removal efficiency (%)	Annual Tp removal (Kg/year)	Removal efficiency (%)	Annual Tp removal (Kg/year)	Annual TP removal (kg/yr)		Final Effluent TP (mg/l)	Final Effluent TP (mg/l)
	2	520	1.5	3,000	5.77	52.40	198.91	31.80	29.76	178.95		0.95	1.36
	2	218	1.5	3,000	13.76	80.59	128.25	58.33	22.89	119.08		0.39	0.83
Tregaron													
	5	520	1.5	3,000	5.77	52.40	497.28	31.80	74.41	447.37		2.38	3.41
	5	218	1.5	3,000	13.76	80.59	320.63	58.33	57.22	297.69		0.97	2.08

5 Summary

This technical note provides a summary of the nutrient reductions and estimated wetland area requirements using the following approaches:

- The P-K-C* approach
- A plug flow model termed the k-C* approach
- Regressions (or exponential decay) equations

Using the approaches above, a number of scenarios have been run to understand the impact of the design and estimated flow, against the different Orthophosphate concentrations on the wetland area requirements and effectiveness.

The P-K-C* model is considered to be the most robust approach based on industry guidance. Therefore, this approach has been used in the final design analysis to understand the effectiveness of the current wetland proposals for Llandysul, Tregaron and Adpar.

Table 5-1 below summarises the wetland area requirements and effective removal of TP Llandysul, Tregaron and Adpar wetlands. The results show that the wetland areas of 2 ha for Llandysul, 1.5 ha for Tregaron and 1 ha for Adpar would provide sufficient treatment to mitigate for the proposed developments under the current CeCC LDP and CCC rLDP to deliver nutrient neutrality.

As mentioned before, the refined calculations performed in Section 4 are done on the basis of having a minimum of six wetland cells at each WwTW location although the preliminary calculations in Section 3 are done on the basis of just two wetland cells at each WwTW location.

Finally, it is important to build suitable additional contingency in the design approach to account for potential reduced wetland performance during the early wetland plant establishment period, winter maintenance months etc. Therefore, the current assessment approach would account for this, but ongoing monitoring of the wetland treatment performance is strongly recommended to inform future designs.

Teifi S Total A		Teifi SAC - Total Annual	Teifi	Total Annual Phosphorus		P-K-C mod DCWW P	el, 6 wetland c performance d D\	ells (using late ata + projecte WF)	st 12 months d estimated	P-K-C model, 6 wetland cells (using Backstop TP Permit + Full Permitted DWF)					Indicative
Wetland Location	Downstream WwTWs Mitigated	Phosphorus Budget/ per Wetland Location (Kg TP/Year/Wetla nd)	Total House s/ per Wetlan d	Budget/ per Wetland Location/per home (Kg TP/Year/Wetla nd/home)	Wetland Area (m2)	Wetland annual TP removal – 100% performa nce nutrient credits(K g TP/year)	Wetland annual TP removal – Effective performan ce nutrient credits (Kg TP/year)	Max Housing No Unlocked - 100% wetland performan ce	Max Housing No Unlocked - Effective wetland performan ce	Wetland annual TP removal – 100% performan ce nutrient credits(Kg TP/year)	Wetland annual TP removal – Effective performan ce nutrient credits (Kg TP/year)	Max Housing No Potentially Unlocked - 100% wetland performance	Max Housing No Potentially Unlocked - Effective wetland performan ce	Wetland Area (m2)	Capital Cost + 50% contingency (£ -in M)
	Llandysul		100												
Llandysul	Pencader	139.06 (see Note 1)	(see Note 1)	0.748	20,000	135.600	124.540	181	167	661.530	595.240	885	796	20,000	0.900
	Drefach/Felindre		,												
Adnar	Adpar	60.51	78 (see	0 776	10 000	128 870	114 810	166	148	363 870	324 160	469	418	10 000	0.450
/ (upu)	Capel Iwan	(see Note 2)	Note 2)	0.170	10,000	120.070	114.010		140		024.100		410	10,000	0.400
	Tregaron														
	Lampeter														
PTP (SuV36/I	PTP (SuV36/h2)	177.12	399	0.444	15 000	407 000	447.070	4000	4000	400.040	470.050	440	402	15 000	0.075
Tregaron PTP (SuV36/		((see Note 3)	Note 3)	0.444	15,000	497.200	447.370	1008	1008	190.910	1/0.990	440	403	15,000	0.675
Llanybydde	Llanybydder														
	Llanfihangel-ar- arth														

Table 5-1 Summary	/ wetland area requirements	s and effective removal	of TP for Llandysul.	Tregaron and Adpar Wetlands.

Note 1 – Llandysul Wetland:	Note 2 – Adpar Wetland
Ceredigion County Council (CeCC) LDP Total Houses to mitigate = 126 (all 126 houses at Llandysul WwTW) CeCC LDP Total Annual Phosphorus Budget = 87.78 Kg TP/Year	Ceredigion County Council (CeCC) LDP Total Houses to mitigate CeCC LDP Total Annual Phosphorus Budget = 27.33 Kg TP/Year
Carmarthenshire County Council (CCC) LDP Total Houses to mitigate = 60 (5 houses at Llandysul WwTW, 44 houses at Pencader WwTW and 11 houses at Drefach/Felindre WwTW) CCC LDP Total Annual Phosphorus Budget = 51.28 Kg TP/Year	Carmarthenshire County Council (CCC) LDP Total Houses to mitig Capel Iwan WwTW) CCC LDP Total Annual Phosphorus Budget = 33.18 Kg TP/Year
Combined CeCC and CCC LDP houses to mitigate = 186 Combined CeCC and CCC Total Annual Phosphorus Budget to mitigate = 139.06 Kg TP/year	Combined CeCC and CCC LDP houses to mitigate = 78 Combined CeCC and CCC Total Annual Phosphorus Budget to m

e = 35 (all 35 houses at Adpar WwTW)

tigate = 43 (37 houses at Adpar WwTW and 6 houses at

```
nitigate = 60.51 Kg TP/year
```

Note 3 – Tregaron Wetland: Ceredigion County Council (CeCC) LDP Total Houses to mitigate = 330 (94 houses at Tregaron WwTW and 236 houses at Lampeter) CeCC LDP Total Annual Phosphorus Budget = 135.14 Kg TP/Year
Carmarthenshire County Council (CCC) LDP Total Houses to mitigate = 69 (30 houses at Lampeter WwTW, 22 houses at Package Treatment Plants, 10 at Llanybydder WwTW and 7 houses at Llanfihangel-ar-arth WwTW) CCC LDP Total Annual Phosphorus Budget = 41.98 Kg TP/Year
Combined CeCC and CCC LDP houses to mitigate = 399 Combined CeCC and CCC Total Annual Phosphorus Budget to mitigate = 117.12 Kg TP/year

Appendix A Refined Wetlands Analysis with P-K-C* Model – Llandysul

AUG						30192602			
	·	CALCUI			GBA:	Resilience -	Water		
Ceredigion Cou	inty Council				REVISION:	P01			
					AUTHOR:	RG			
Wetland Sites -	Teifi Wetland	5			CHECKER: EBP				
					APPROVER:				
Process Design	Calculations -	Llandysul			DATE:				
Permitted Q, O	rthophosphate	e Oct 2022 - 0	Oct 2023		DOC. No:				
Front Sheet					SHEET:	1	OF	4	
TOTAL SHEETS	AUTHOR	DATE	CHECKED BY	DATE	APPROVED BY	DATE	COMM	1ENTS	
4	RG	29/11/23	EBP	30/11/23	LV	12/01/23			
TATEMENT (Inc.	high level des	cription of sit	e/process and p	urpose of ca	lculations)				
	Ceredigion Cou Wetland Sites - Process Design Permitted Q, O Front Sheet TOTAL SHEETS 4 A A A A A A A A A A A A A A A A A A	Ceredigion County Council Wetland Sites - Teifi Wetlands Process Design Calculations - Permitted Q, Orthophosphate Front Sheet TOTAL SHEETS AUTHOR 4 RG ATEMENT (Inc. high level desi	Ceredigion County Council Wetland Sites - Teifi Wetlands Process Design Calculations - Llandysul Permitted Q, Orthophosphate Oct 2022 - C Front Sheet TOTAL SHEETS AUTHOR DATE 4 RG 29/11/23 AUTHOR JATE ATEMENT (Inc. high level description of sit	Ceredigion County Council Wetland Sites - Teifi Wetlands Process Design Calculations - Llandysul Permitted Q, Orthophosphate Oct 2022 - Oct 2023 Front Sheet TOTAL AUTHOR DATE CHECKED BY 4 RG 29/11/23 EBP 4 RG 29/11/23 EBP 4 RG 1 1 4 RG 29/11/23 EBP	Ceredigion County Council Wetland Sites - Teifi Wetlands Process Design Calculations - Llandysul Permitted Q, Orthophosphate Oct 2022 - Oct 2023 Front Sheet TOTAL AUTHOR DATE CHECKED BY DATE 4 RG 29/11/23 EBP 30/11/23 Image: Checked by 4 RG 29/11/23 EBP 30/11/23 Image: Checked by Image: Checked by Image: Checked by Image: Checked by 4 RG 29/11/23 EBP 30/11/23 Image: Checked by Image: Checked by Image: Checked by Image: Checked by 4 RG 29/11/23 EBP 30/11/23 Image: Checked by Image: Checked by Image: Checked by Image: Checked by ATEMENT (Inc. high level description of site/process and purpose of ca Image: Checked by Image: Checked by Image: Checked by	Ceredigion County Council REVISION: AUTHOR: CHECKER: APPROVER: Process Design Calculations - Llandysul Permitted Q, Orthophosphate Oct 2022 - Oct 2023 DATE: DOC. No: Front Sheet SHEET: TOTAL SHEETS AUTHOR DATE CHECKED BY DATE APPROVED BY 4 RG 29/11/23 EBP 30/11/23 LV	Ceredigion County Council REVISION: P01 AUTHOR: RG Wetland Sites - Telfi Wetlands CHECKER: EBP Process Design Calculations - Llandysul DATE: 24/11/2023 Permitted Q, Orthophosphate Oct 2022 - Oct 2023 DOC. No: DOC. No: Front Sheet SHEET: 1 TOTAL AUTHOR DATE CHECKED BY DATE APPROVED BY DATE 4 RG 29/11/23 EBP 30/11/23 LV 12/01/23 4 RG 10 10 10 10 10 4 RG 10 10 10 10 10 4 RG 12/01/23 10 10 10 10 <td>Ceredigion County Council REVISION: P01 AUTHOR: RG Vetland Sites - Teifi Wetlands CHECKER: EBP Process Design Calculations - Liandysul DATE: 24/11/2023 Permitted Q, Orthophosphate Oct 2022 - Oct 2023 DOC. No: 24/11/2023 Front Sheet SHEET: 1 OF TOTAL AUTHOR DATE CHECKER BY DATE APPROVED BY DATE COMM 4 RG 29/11/23 EBP 30/11/23 LV 12/01/23 Image: Common state of the state o</td>	Ceredigion County Council REVISION: P01 AUTHOR: RG Vetland Sites - Teifi Wetlands CHECKER: EBP Process Design Calculations - Liandysul DATE: 24/11/2023 Permitted Q, Orthophosphate Oct 2022 - Oct 2023 DOC. No: 24/11/2023 Front Sheet SHEET: 1 OF TOTAL AUTHOR DATE CHECKER BY DATE APPROVED BY DATE COMM 4 RG 29/11/23 EBP 30/11/23 LV 12/01/23 Image: Common state of the state o	

ARCADIS		CALCULATIO	DNS	PROJECT No:	30192602 Resilience - Water				
KEY	CLIENT			BEVISION:	PO1				
	CELENT.	Ceredigion County Council		AUTHOR:	RG				
Input values	PROJECT:	Walked Cher, TCC Walked.		CHECKER: EBP					
Calculated values		wetland Sites - Teiff Wetlands		APPROVER:	0				
Linked values	SUBJECT:	Process Design Calculations - Llandysul		DATE: 24/11/2023					
Assumed values		Trocess besign calculations Elandysa		DOC. No:	0				
Iterated values	SECTION:	P-k-c		SHEET:	2	OF	4		
	•								
Process Calculations									
Parameter	Unit	Value	References/Comments						
C									
	mg/i	25	Influent concentration of Total Nitro	ogen					
Ci-TP	111g/1	1.50	Deduction of rotal Phose	Sphorus (Oct 2022 - Oct 2023)					
C TN	111g/1	1.5	Background concentration of Total	Nicrogen					
Стр	mg/i	0.022	Background concentration of lotal P	Phosphorus					
K _{TN}	m/yr	11.18	Rate coefficient for reduction of lot	al Nitrogen					
κ _{τρ}	m/yr	10	Rate coefficient for reduction of Tot	al Phosphorus					
K _{20-TN}	m/yr	21.5	Median value rate coefficient for rec	duction of Total Nitrogen					
θ _{-τN}	-	1.056	Median Temp coefficient for Total N	litrogen					
θ _{-TP}	-	0.986	Median Temp coefficient for Total P	hosphorus					
Т	°C	8	Average operating temperature						
No. of treatment stages	-	3							
Р	-	6	For one treatment stage i.e. 1 cell in	series/three treatment stages i.e	3 cells in series - P is 2 or 6 resp	ectively (conservative value	ue)		
Design Flow	m3/d	689	Input flow rate into here						
Total annual hydraulic	m ³ /vr	251485							
throughput									
Total wetland area	m ²	20,000	Active cell area (i.e. excluding diving	g berms, spreader channels and le	evel control structures)				
q	m/yr	12.57425							
Total Nitrogen									
Amount of remaining	-	10.26	NB. treated discharge from the wetl	and cannot be less than the back	ground concentrations, as it is no	ot possible to achieve i.e. I	background conc will always be present		
contaminant, Ce - C*	%	43.64							
Treatment efficiency of wetland	%	56.36	% of contaminant removed						
Total Phosphorus									
Amount of remaining	-	0.63	NB. treated discharge from the wetl	and cannot be less than the back	ground concentrations, as it is no	ot possible to achieve i.e. I	background conc will always be present		
contaminant, Ce - C*	%	47.39							
Treatment efficiency of wetland	%	52.61	% of contaminant removed						

ARCADIS		CALCULATIO	DNS	PROJECT No:	30192602 Resilience - Water					
KEY	CLIENT			BEVISION:	PO1					
	CELENT:	Ceredigion County Council		AUTHOR	RG					
Input values	PROJECT:	Walked Cher, Trift Walked.		CHECKER: EBP						
Calculated values		wetland Sites - Telfi Wetlands		APPROVER: 0						
Linked values	SUBJECT:	Process Design Calculations - Llandysul		DATE:	DATE: 24/11/2023					
Assumed values		Trocess besign calculations Elandysu		DOC. No:	0					
Iterated values	SECTION:	P-k-c		SHEET:	3	OF	4			
	-									
Process Calculations										
Parameter	Unit	Value	References/Comments							
ć	mg/l	25	Influent concentration of Total Nitr	2000						
Ci-m	mg/l	25	Influent concentration of Total Pho	sphorus (Oct 2022 - Oct 2023)						
C*	mg/l	1.50	Background concentration of Total	Nitrogen						
C*		1.5	Dackground concentration of Total	Dheenherve						
C TP	iiig/i	0.022	Background concentration of Total	Phosphorus						
KTN	m/yr	11.18	Rate coefficient for reduction of for	Lai Nitrogen						
K _{TP}	m/yr	10	Rate coefficient for reduction of 1 of	tal Phosphorus						
K _{20-TN}	m/yr	21.5	Median value rate coefficient for re	duction of Total Nitrogen						
θ-τΝ	-	1.056	Median Temp coefficient for Total N	Nitrogen						
θ. _т ,	-	0.986	Median Temp coefficient for Total F	Phosphorus						
Т	°C	8	Average operating temperature							
No. of treatment stages	-	3								
Р	-	6	For one treatment stage i.e. 1 cell in	n series/three treatment stages i.e	3 cells in series - P is 2 or 6 resp	ectively (conservative val	ue)			
Design Flow	m3/d	689	Input flow rate into here							
Total annual hydraulic	m ³ /yr	251485								
throughput	2	10.000								
Iotal wetland area	m	10,000	Active cell area (i.e. excluding diving	g berms, spreader channels and lev	/el control structures)					
q	m/yr	25.1485								
Total Nitrogen										
Amount of remaining	-	15.30	NB. treated discharge from the wet	land cannot be less than the backg	round concentrations, as it is n	ot possible to achieve i.e.	background conc will always be present			
contaminant, Ce - C*	%	65.12								
Treatment efficiency of wetland	%	34.88	% of contaminant removed							
Amount of remaining		0.91	NR treated discharge from the wot	land cannot be less than the backs	round concentrations, as it is n	ot possible to achieve i o	background concivill always be present			
contaminant Ce - C*	-	68.04	ND. treated discharge from the wet	iano cannot be less than the backg	round concentrations, dS It IS II	or possible to achieve l.e.	background conc will always be present			
Treatment efficiency of wetland	%	31.96	% of contaminant removed							
reatment enciency of wetland	20	51.50	% or contaminant renioved							

			PROJECT No:	3019260	2		
	ARUADIS	CALCULATIONS	GBA:	Resilienc			
CLIENT:	Corodigion County Co	uncil	REVISION:	P01			
	Cerealgion County Co	unen	AUTHOR:	RG			
PROJECT:	Wotland Sitos Toifi V	Vatlands	CHECKER:	EBP			
	Wetianu Sites - Tenri v	venanus	APPROVER:	0			
SUBJECT:	Drogoss Dosign Coloul	ations Llandword	DATE:	45254			
	Process Design Calcul	ations - Liandysui	DOC. No:	0			
SECTION:	References		SHEET:	4	OF	4	

bnstructed Wetland Design & Specification.pdf

The 'Tanks In Series' (TIS) model assumes that the wetland behaves like a treatment plant with a number of completely mixed tanks connected in series, whereby the contaminant is reduced in each tank. This model considers the concentration of the contaminant (C), the background concentration (C*), the rate of reduction of the contaminant over time (rate coefficient 'k', m/d) and the hydraulic parameter (N = no. of tanks in series). It is an improvement on the PFD model, as N is considered to be a finite number (for plug flow, N = ∞ which is not achievable). However, the TIS model assumes the reduction of a single compound through a treatment wetland, whereas many contaminants such as TN and TP are mixtures of contaminants that break down at different rates. The mixture becomes *weathered*, which is a term used to describe the selective stripping of light volatile materials upon exposure to outdoor environments. Observed weathering behaviour in real wetland situations may be represented by the TIS model, wherein the parameter values are relaxed to become fitting parameters. This 'relaxed' TIS model is known as the P-k-C* model and is defined to be as follows (Kadlec & Wallace 2009):

$$\frac{C_{e} - C^{*}}{C_{i} - C^{*}} = \left[\begin{array}{c} 1 + \frac{k}{Pq} \right]^{P}$$

 C_i = Influent concentration of contaminant (mg/l)

 C_e = Effluent concentration of contaminant (mg/l) C* = Background concentration of contaminant (in the wetland water column) (mg/l)

k = Rate coefficient for reduction of contaminant (m/yr)

P = Apparent no. of tanks in series (PTIS - dimensionless)

q = Hydraulic loading rate (m/yr)

k - C* modelling *Wetland Feasibility, Design and Offsetting (1).pdf

Plug-flow k-C* Model

The plug-flow k-C* model is based on the below equation; large constructed p-control wetlands have been found to fit this description (Kadlec 2016¹¹):

A=(0.0365*Q/k)*In[(Ci-C*)/Ce-C*)]

Where A= Area (ha), Q=design flow (m₃/d), k: apparent rate coefficient (m/year/1), C:: inlet TP concentration (gP/m3); C*: background Concentration (mgP/I); Ce=Target Effluent Concentration (mg/I)

- (Flows and TP levels modelled are outlined in table 2).
- C_o: The target TP concentration for the wetland is 1mg/l.
- C*: The wetland background concentration is estimated at 0.05mg/l.
- k: The apparent rate coefficient used was 12 m/year.

						PROJECT No:	30192602		
	5-015		CALCUI			GBA:	Resilience -	Water	
CLIENT:	Ceredigion Cou	inty Council				REVISION:	P01		
						AUTHOR:	RG		
PROJECT:	Wetland Sites -	 Teifi Wetland 	S			CHECKER: EBP			
						APPROVER:			
SUBJECT:	Process Design	Calculations -	Llandysul			DATE: 24/11/2023			
	Permitted Q, C	thophosphate	July 2021 - A	vug 2022		DOC. No:			
SECTION:	Front Sheet					SHEET:	1	OF	4
ISSUE	TOTAL SHEETS	AUTHOR	DATE	CHECKED BY	DATE	APPROVED BY	DATE	COMM	/ENTS
P01	4	RG	29/11/23	EBP	30/11/23	LV	12/01/23		
DESIGN BASIS S	TATEMENT (Inc.	high level des	cription of si	te/process and p	urpose of ca	lculations)			

ARCADIS		CALCULATIO	DNS	PROJECT No:	30192602 Resilience - Water				
KEY	CLIENT			GBA: REVISION:	PO1				
	CELENT:	Ceredigion County Council		AUTHOR:	RG				
Input values	PROJECT:	Wells of Charles Table Manhaoda		CHECKER: EBP					
Calculated values		wetland Sites - Teiff Wetlands		APPROVER: 0					
Linked values	SUBJECT:	Process Design Calculations - Llandysul		DATE: 24/11/2023					
Assumed values		Trocess besign calculations Elandysa		DOC. No:	0				
Iterated values	SECTION:	P-k-c		SHEET:	2	OF	4		
				•					
Process Calculations									
Parameter	Unit	Value	References/Comments						
C									
	mg/i	25	Influent concentration of Total Nitro	ogen					
Ci-TP	111g/1	2.54	Deduction of rotal Phose	Sphorus (July 2021 - Aug 2022)					
C TN	111g/1	1.5	Background concentration of Total	Nicrogen					
Стр	mg/i	0.022	Background concentration of lotal P	Phosphorus					
K _{TN}	m/yr	11.18	Rate coefficient for reduction of lot	al Nitrogen					
κ _{τρ}	m/yr	10	Rate coefficient for reduction of Tot	al Phosphorus					
K _{20-TN}	m/yr	21.5	Median value rate coefficient for rec	duction of Total Nitrogen					
θ _{-τN}	-	1.056	Median Temp coefficient for Total N	litrogen					
θ _{-TP}	-	0.986	Median Temp coefficient for Total P	hosphorus					
Т	°C	8	Average operating temperature						
No. of treatment stages	-	3							
Р	-	6	For one treatment stage i.e. 1 cell in	series/three treatment stages i.e	3 cells in series - P is 2 or 6 resp	ectively (conservative valu	ie)		
Design Flow	m3/d	689	Input flow rate into here						
Total annual hydraulic	m ³ /vr	251485							
throughput	,,,.								
Total wetland area	m ²	20,000	Active cell area (i.e. excluding diving	berms, spreader channels and le	vel control structures)				
q	m/yr	12.57425							
Total Nitrogen									
Amount of remaining	-	10.26	NB. treated discharge from the wetl	and cannot be less than the back	ground concentrations, as it is no	ot possible to achieve i.e. b	packground conc will always be present		
contaminant, Ce - C*	%	43.64							
Treatment efficiency of wetland	%	56.36	% of contaminant removed						
Total Phosphorus									
Amount of remaining		1 10	NB treated discharge from the wet	and cannot be less than the back	ground concentrations as it is no	nt nossible to achieve i.e. h	packground conc will always be present		
contaminant. Ce - C*	%	47.39	the reaced abenarge from the wet				on anays se present		
Treatment efficiency of wetland	%	52.61	% of contaminant removed						
cathere enderly of weatha	,0								

ARCADIS		CALCULATIO	INS	PROJECT No:	30192602 Recilience - Water					
KEY	CLIENT:			BEVISION:	P01					
		Ceredigion County Council		AUTHOR: RG						
Input values	PROJECT:	Wetland Sites - Teifi Wetlands		CHECKER:	EBP					
Calculated values		Wetland Sites - Telli Wetlands		APPROVER:	0					
Linked values	SUBJECT:	Process Design Calculations - Llandysul		DATE:	DATE: 24/11/2023					
Assumed values				DOC. No:	0					
Iterated values	SECTION:	P-k-c		SHEET:	3	OF	4			
Process Calculations										
Parameter	Unit	Value	References/Comments							
Gree	mg/l	25	Influent concentration of Total Nit	rogen						
Citro	mg/l	2.34	Influent concentration of Total Ph	osphorus (July 2021 - Aug 2022)						
C* ₁₁₁	mg/l	1.5	Background concentration of Tota	l Nitrogen						
C*	mg/l	0.022	Background concentration of Tota	l Phosphorus						
- 19 k	m/vr	11 18	Rate coefficient for reduction of T	ntal Nitrogen						
	m/y.	10	Rate coefficient for reduction of T							
k	mhr	21.5	Median value rate coefficient for r	eduction of Total Nitrogen						
N20-TN	in/yi	1 056	Median Tamp coefficient for Total	Nitrogen						
0- _{TN}		1.050	Median Temp coefficient for Total	Phosphorus						
U.TP	•	0.980		Phosphorus						
No of treatment stages	-	3	Average operating temperature							
p		6	For one treatment stage i.e. 1 cell	in series/three treatment stages i e	3 cells in series - P is 2 or 6 rest	ectively (conservative valu	ue)			
Design Flow	m3/d	689	Input flow rate into here							
Total annual hydraulic	3.	254.405								
throughput	m ⁻ /yr	251485								
Total wetland area	m²	10,000	Active cell area (i.e. excluding divi	ng berms, spreader channels and le	evel control structures)					
q	m/yr	25.1485								
Total Nitrogen										
Amount of remaining	-	15.30	NB. treated discharge from the we	tland cannot be less than the back	ground concentrations, as it is n	ot possible to achieve i.e.	background conc will always be present			
contaminant, Ce - C*	%	65.12								
Treatment efficiency of wetland	%	34.88	% of contaminant removed							
Total Phosphorus										
Amount of remaining	-	1.58	NB. treated discharge from the we	tland cannot be less than the back	ground concentrations, as it is n	ot possible to achieve i.e.	background conc will always be present			
contaminant, Ce - C*	%	68.04								
Treatment efficiency of wetland	%	31.96	% of contaminant removed							

			PROJECT No:	3019260	2		
	ARUADIS	CALCULATIONS	GBA:	Resilienc	e - Water		
CLIENT:	Corodigion County Co	uncil	REVISION:	P01			
	Cerealgion County Co	unen	AUTHOR:	RG			
PROJECT:	Wotland Sitos Toifi V	Vatlands	CHECKER:	EBP			
	Wetianu Sites - Tenri v	venanus	APPROVER:	0			
SUBJECT:	Drogoss Dosign Coloul	ations Llandword	DATE:	45254			
	Process Design Calcul	ations - Liandysui	DOC. No:	0			
SECTION:	References		SHEET:	4	OF	4	

bnstructed Wetland Design & Specification.pdf

The 'Tanks In Series' (TIS) model assumes that the wetland behaves like a treatment plant with a number of completely mixed tanks connected in series, whereby the contaminant is reduced in each tank. This model considers the concentration of the contaminant (C), the background concentration (C*), the rate of reduction of the contaminant over time (rate coefficient 'k', m/d) and the hydraulic parameter (N = no. of tanks in series). It is an improvement on the PFD model, as N is considered to be a finite number (for plug flow, N = ∞ which is not achievable). However, the TIS model assumes the reduction of a single compound through a treatment wetland, whereas many contaminants such as TN and TP are mixtures of contaminants that break down at different rates. The mixture becomes *weathered*, which is a term used to describe the selective stripping of light volatile materials upon exposure to outdoor environments. Observed weathering behaviour in real wetland situations may be represented by the TIS model, wherein the parameter values are relaxed to become fitting parameters. This 'relaxed' TIS model is known as the P-k-C* model and is defined to be as follows (Kadlec & Wallace 2009):

$$\frac{C_e - C^*}{C_i - C^*} = \left[\begin{array}{c} 1 + \frac{k}{Pq} \end{array} \right]^{-P}$$

 C_i = Influent concentration of contaminant (mg/l)

 $\label{eq:ce} C_e = \text{Effluent concentration of contaminant (mg/l)} \\ C^* = \text{Background concentration of contaminant (in the wetland water column) (mg/l)}$

- k = Rate coefficient for reduction of contaminant (m/yr)
- P = Apparent no. of tanks in series (PTIS dimensionless)

q = Hydraulic loading rate (m/yr)

k - C* modelling *Wetland Feasibility, Design and Offsetting (1).pdf

Plug-flow k-C* Model

The plug-flow k-C* model is based on the below equation; large constructed p-control wetlands have been found to fit this description (Kadlec 2016¹¹):

A=(0.0365*Q/k)*In[(Ci-C*)/Ce-C*)]

Where A= Area (ha), Q=design flow (m₃/d), k: apparent rate coefficient (m/year/1), C_i: inlet TP concentration (gP/m3); C*: background Concentration (mgP/I); Ce=Target Effluent Concentration (mg/I)

- (Flows and TP levels modelled are outlined in table 2).
- C_o: The target TP concentration for the wetland is 1mg/l.
- (C*: The wetland background concentration is estimated at 0.05mg/l.
- k: The apparent rate coefficient used was 12 m/year.

						PROJECT No:	30192602			
	UADIS		CALCUI			GBA:	Resilience -	Resilience - Water		
CLIENT:	Ceredigion Cou	inty Council				REVISION:	P01			
						AUTHOR:	RG			
PROJECT:	Wetland Sites -	 Teifi Wetland 	S			CHECKER:	EBP			
						APPROVER:				
SUBJECT:	Process Design	Calculations -	Llandysul			DATE:	24/11/2023		ſ	
	Permitted Q, B	ackstop TP				DOC. No:				
SECTION:	ECTION: Front Sheet					SHEET:	1	OF	4	
ISSUE	TOTAL SHEETSAUTHORDATECHECKED BYDATE4RG29/11/23EBP30/11/23		APPROVED BY	DATE	COMME	NTS				
P01	4	RG	29/11/23	EBP	30/11/23	LV	12/01/23			
DESIGN BASIS	STATEMENT (Inc.	high level des	cription of si	te/process and p	urpose of ca	alculations)				

ARCADIS		CALCULATIC	DNS	PROJECT No:	30192602 Besilience - Water						
KEY	CLIENT:			BEVISION:	P01						
		Ceredigion County Council		AUTHOR:	RG						
Input values	PROJECT:	Watland Sites Toifi Watlands		CHECKER:	EBP						
Calculated values		wettand sites - Tenr Wettands		APPROVER:	0	0					
Linked values	SUBJECT:	Process Design Calculations - Llandysul		DATE: 24/11/2023							
Assumed values				DOC. No:	0						
Iterated values	SECTION:	P-k-c		SHEET:	2	OF	4				
Process Calculations											
Parameter	Unit	Value	References/Comments								
C.m.	mg/l	25	Influent concentration of Total Nit	ogen							
C _{1-IN}	mg/l	25	Influent concentration of Total Pho	osphorus (Backston TP)							
C****	mg/l	1.5	Background concentration of Total	Nitrogen							
C*	mg/l	0.022	Background concentration of Total	Phosphorus							
kau kau	m /vr	11 18	Bate coefficient for reduction of Total Nicrosen								
K N	m hr	10	Rate coefficient for reduction of lotal Nitrogen								
KTP K	m/yr	21 5	Nadion value rate coefficient for r								
K _{20-TN}	m/yr	21.5	Median Value rate coefficient for h	duction of Total Nitrogen							
U-TN	-	1.056	Median Temp coefficient for Total	Nitrogen							
U-TP	-	0.986	Median Temp coefficient for Total	Phosphorus							
No. of the state o	•٢	8	Average operating temperature								
No. of treatment stages	-	3	For one treatment store is 1 cells								
P Docigo Flow	- m2/d	60	For one treatment stage i.e. I cell	n series/three treatment stages i.e	3 cells in series - P is 2 or 6 resp	ectively (conservative val	ue)				
Total appual hydraulic	115/0	005	input now rate into here								
throughput	m³/yr	251485									
Total wetland area	m ²	20.000	Active cell area (i.e. excluding divir	g berms spreader channels and le	vel control structures)						
n n	m /vr	12 57425									
Ч	117 91	12.57725									
Total Nitrogen											
Amount of remaining	-	10.26	NB. treated discharge from the we	tland cannot be less than the back	ground concentrations, as it is no	t possible to achieve i.e.	background conc will always be present				
contaminant, Ce - C*	%	43.64									
Treatment efficiency of wetland	%	56.36	% of contaminant removed								
Total Phosphorus											
Amount of remaining	-	2.36	NB, treated discharge from the wetland cannot be less than the background concentrations, as it is not possible to achieve i.e. background conc will always be present								
contaminant. Ce - C*	%	47.39	no. created abonarge from the we								
Treatment efficiency of wetland	%	52.61	% of contaminant removed								

ARCADIS		CALCULATIO	INS	PROJECT No:	30192602 Resilience - Water						
KEY	CLIENT			BEVISION:	PO1						
		Ceredigion County Council		AUTHOR:	RG						
Input values	PROJECT:	Watland Sites Taifi Watlands		CHECKER:	EBP						
Calculated values		wettand sites - Teni wettands		APPROVER:	0						
Linked values	SUBJECT:	Process Design Calculations - Llandysul		DATE:	TE: 24/11/2023						
Assumed values				DOC. No:	0						
Iterated values	SECTION:	P-k-c		SHEET:	3	OF	4				
Process Calculations											
Parameter	Unit	Value	References/Comments								
C.m.	mg/l	25	Influent concentration of Total Nit	rogen							
C _{1-IN}	mg/l	5	Influent concentration of Total Ph	osphorus (Backstop TP)							
C*	mg/l	15	Background concentration of Tota	Nitrogen							
C*	mg/l	0.022	Background concentration of Tota	Phosphorus							
C IP	m hr	11 19	Background concentration of rotal Nitrogen								
KTN k		10	Date coefficient for reduction of T	tal Nici Ogen							
K _{TP}	ri/yr	10	Rate coefficient for reduction of the	otal Phosphorus							
к _{20-тN}	m/yr	21.5	iviedian value rate coefficient for r	eduction of Lotal Nitrogen							
0 _{-TN}	-	1.056	Median Temp coefficient for Total	Nitrogen							
θ. _т ρ	-	0.986	Median Temp coefficient for Total	Phosphorus							
Ť	°C	8	Average operating temperature								
No. of treatment stages	-	3									
p Datis		6	For one treatment stage i.e. 1 cell	in series/three treatment stages i.e	3 cells in series - P is 2 or 6 resp	ectively (conservative valu	ie)				
Design Flow	m3/d	689	input flow rate into here								
throughput	m³/yr	251485									
Total wetland area	m ²	10.000	Active cell area (i.e. excluding divi	a berms spreader chappels and le	vel control structures)						
	111	25,1495	Active cell area (i.e. excluding divi	ig bernis, spreader channels and le	ver control structures,						
Ч	11791	25.1465									
Total Nitrogen											
Amount of remaining	-	15.30	NB. treated discharge from the we	tland cannot be less than the back	ground concentrations, as it is no	t possible to achieve i.e. b	packground conc will always be present				
contaminant, Ce - C*	%	65.12									
Treatment efficiency of wetland	%	34.88	% of contaminant removed								
Total Phosphorus											
Amount of remaining	-	3.39	NB. treated discharge from the we	tiand cannot be less than the back	ground concentrations, as it is no	t possible to achieve i.e. t	packground conc will always be present				
Trootmont officions of workers	% 9/	58.04 21.06	% of contaminant romand								
reatment efficiency of wetland	%	31.96	% of contaminant removed								

			PROJECT No:	3019260	2		
-	ARUADIS	CALCOLATIONS	GBA:	Resilienc	e - Water		
CLIENT:	Corodigion County Co	uncil	REVISION:	P01			
	Cerealgion County Co	unch	AUTHOR:	RG			
PROJECT:	Wotland Sitos Toifi V	Votlands	CHECKER:	EBP			
	Wetianu Sites - Tein V	vetialius	APPROVER:	0			
SUBJECT:	Brocoss Design Calcul	ations Llandwoul	DATE:	45254			
	Process Design Calcul		DOC. No:	0			
SECTION:	References		SHEET:	4	OF	4	

bnstructed Wetland Design & Specification.pdf

The 'Tanks In Series' (TIS) model assumes that the wetland behaves like a treatment plant with a number of completely mixed tanks connected in series, whereby the contaminant is reduced in each tank. This model considers the concentration of the contaminant (C), the background concentration (C*), the rate of reduction of the contaminant over time (rate coefficient 'k', m/d) and the hydraulic parameter (N = no. of tanks in series). It is an improvement on the PFD model, as N is considered to be a finite number (for plug flow, N = ∞ which is not achievable). However, the TIS model assumes the reduction of a single compound through a treatment wetland, whereas many contaminants such as TN and TP are mixtures of contaminants that break down at different rates. The mixture becomes *weathered*, which is a term used to describe the selective stripping of light volatile materials upon exposure to outdoor environments. Observed weathering behaviour in real wetland situations may be represented by the TIS model, wherein the parameter values are relaxed to become fitting parameters. This 'relaxed' TIS model is known as the P-k-C* model and is defined to be as follows (Kadlec & Wallace 2009):

$$\frac{C_{e} - C^{*}}{C_{i} - C^{*}} = \left[\begin{array}{c} 1 + \frac{k}{Pq} \end{array} \right]^{P}$$

 C_i = Influent concentration of contaminant (mg/l)

 $\label{eq:ce} C_e = \text{Effluent concentration of contaminant (mg/l)} \\ C^* = \text{Background concentration of contaminant (in the wetland water column) (mg/l)}$

k = Rate coefficient for reduction of contaminant (m/yr)

P = Apparent no. of tanks in series (PTIS – dimensionless)

q = Hydraulic loading rate (m/yr)

k - C* modelling *Wetland Feasibility, Design and Offsetting (1).pdf

Plug-flow k-C* Model

The plug-flow k-C* model is based on the below equation; large constructed p-control wetlands have been found to fit this description (Kadlec 2016¹¹):

A=(0.0365*Q/k)*In[(Ci-C*)/Ce-C*)]

Where A= Area (ha), Q=design flow (m₃/d), k: apparent rate coefficient (m/year/1), C_i: inlet TP concentration (gP/m3); C*: background Concentration (mgP/I); Ce=Target Effluent Concentration (mg/I)

- (Flows and TP levels modelled are outlined in table 2).
- C_o: The target TP concentration for the wetland is 1mg/l.
- C*: The wetland background concentration is estimated at 0.05mg/l.
- k: The apparent rate coefficient used was 12 m/year.

						PROJECT No:	30192602	
			CALCUI	LATIONS		GBA:	Resilience -	Water
CLIENT:	Ceredigion Cou	inty Council				REVISION:	P01	
						AUTHOR:	RG	
PROJECT:	Wetland Sites -	Teifi Wetland	5			CHECKER:	EBP	
						APPROVER:		
SUBJECT:	Process Design	Calculations -	Llandysul			DATE:	24/11/2023	1
	Estimated Q, O	rthophosphate	e Oct 2022- Oct 2023			DOC. No:		
SECTION:	TION: Front Sheet						1	OF 4
ISSUE	TOTAL SHEETSAUTHORDATECHEG4RG29/11/23		CHECKED BY	DATE	APPROVED BY	DATE	COMMENTS	
P01	4	RG	29/11/23	EBP	30/11/23	LV	12/01/23	
					<u> </u>			
DESIGN BASIS	STATEMENT (Inc.	high level des	cription of si	te/process and p	urpose of ca	Iculations)		

ARCADIS		CALCULATIO	INS	PROJECT No:	30192602 Resilience - Water					
KEY	CLIENT:			BEVISION:	P01					
		Ceredigion County Council		AUTHOR:	RG					
Input values	PROJECT:	Wetland Sites Taif Wetlands		CHECKER:	EBP					
Calculated values		Wetiand Sites - Teni Wetiands		APPROVER:	0					
Linked values	SUBJECT:	Process Design Calculations - Llandysul		DATE:	24/11/2023					
Assumed values				DOC. No:	0					
Iterated values	SECTION:	P-k-c		SHEET:	2	OF	4			
Process Calculations										
Parameter	Unit	Value	References/Comments							
CLTM	mg/l	25	Influent concentration of Total Nit	ogen						
C _{i-TP}	mg/l	1.36	Influent concentration of Total Pho	sphorus (Oct 2022 - Oct 2023)						
С* _{тм}	mg/l	1.5	Background concentration of Total	Nitrogen						
C* _{TP}	mg/l	0.022	Background concentration of Total	Phosphorus						
k _{tN}	m/vr	11.18	Rate coefficient for reduction of Total Nitrogen							
k _{TD}	m/vr	10	Rate coefficient for reduction of Total Plogen							
K20 TN	m/yr	21.5	Median value rate coefficient for re	eduction of Total Nitrogen						
θ m	-	1.056	Median Temp coefficient for Total	Nitrogen						
e-in e-in	-	0.986	Median Temp coefficient for Total	Phosphorus						
Т	°C	8	Average operating temperature	in oppholog						
No. of treatment stages	-	3	······································							
P	-	6	For one treatment stage i.e. 1 cell i	n series/three treatment stages i.e	3 cells in series - P is 2 or 6 resp	ectively (conservative valu	e)			
Design Flow	m3/d	369	Input flow rate into here							
Total annual hydraulic	37	134695								
throughput	m /yr	134083								
Total wetland area	m²	20,000	Active cell area (i.e. excluding divin	g berms, spreader channels and le	evel control structures)					
q	m/yr	6.73425								
Total Nitrogen										
Amount of remaining	-	5.43	NB. treated discharge from the we	tland cannot be less than the back	ground concentrations, as it is no	ot possible to achieve i.e. b	ackground conc will always be present			
contaminant, Ce - C*	%	23.09								
Treatment efficiency of wetland	%	76.91	% of contaminant removed							
Total Phosphorus										
Amount of remaining	-	0.36	NB. treated discharge from the wetland cannot be less than the background concentrations, as it is not possible to achieve i.e. background conc will always be present							
contaminant, Ce - C*	%	26.53								
Treatment efficiency of wetland	%	73.47	% of contaminant removed							

ARCADIS		CALCULATIC	DNS	PROJECT No:	30192602 Resilience - Water					
KEY	CLIENT:			BEVISION [.]	P01					
		Ceredigion County Council		AUTHOR:	RG					
Input values	PROJECT:	Wetland Sites Tail Wetlands		CHECKER:	EBP					
Calculated values		Wetland Sites - Telli Wetlands		APPROVER:	0					
Linked values	SUBJECT:	Process Design Calculations - Llandysul		DATE: 24/11/2023						
Assumed values		The cost of the second se		DOC. No:	0					
Iterated values	SECTION:	P-k-c		SHEET:	3	OF	4			
Process Calculations										
Parameter	Unit	Value	References/Comments							
C C	mg/l	25	Influent concentration of Total Nitr							
	mg/i	25	Influent concentration of Total Pho	ogen venhorus (Oct 2022 - Oct 2022)						
С!-тр	mg/1	1.50	Packground concentration of Total	Nitrogon						
C*		1.5	Deckground concentration of Total	Dheenherus						
C TP	mg/i	0.022	Background concernitation of rotal Phosphorus							
R _{TN}	m/yr	11.18	Rate coefficient for reduction of Total Nitrogen							
K _{TP}	m/yr	10	Rate coefficient for reduction of To	tal Phosphorus						
K _{20-TN}	m/yr	21.5	Median value rate coefficient for re	eduction of Total Nitrogen						
θ-τΝ	-	1.056	Median Temp coefficient for Total	Nitrogen						
θ _{-τ}	-	0.986	Median Temp coefficient for Total	Phosphorus						
Т	°C	8	Average operating temperature							
No. of treatment stages	-	3								
Р	-	6	For one treatment stage i.e. 1 cell i	n series/three treatment stages i.e	3 cells in series - P is 2 or 6 resp	ectively (conservative valu	Je)			
Design Flow	m3/d	369	Input flow rate into here							
Total annual hydraulic	m ³ /vr	134685								
throughput										
Total wetland area	m ²	10,000	Active cell area (i.e. excluding divin	g berms, spreader channels and le	vel control structures)					
q	m/yr	13.4685								
Total Nitrogen										
Amount of remaining	-	10.80	NB. treated discharge from the wet	tland cannot be less than the back	ground concentrations, as it is no	ot possible to achieve i.e. I	background conc will always be present			
contaminant, Ce - C*	%	45.95								
Treatment efficiency of wetland	%	54.05	% of contaminant removed							
Total Dhosphorus										
Amount of remaining	-	0.66	NR treated discharge from the wetland cannot be less than the background concentrations, as it is not nossible to achieve i.e. background conc. will always be present							
contaminant. Ce - C*	%	49.66	No. treated discharge from the wet		5. cana concentrations, ds it is in	possible to demede i.e. i	sangiouna cone will diwuys be present			
Treatment efficiency of wetland	%	50.34	% of contaminant removed							
redunent enterity of wettand	,.	50131								

6 ^			PROJECT No:	3019260	2		
/-	ARUADIS	CALCULATIONS	GBA:	Resilienc	e - Water		
CLIENT:	Corodigion County Co	uncil	REVISION:	P01			
	Cerealgion County Co		AUTHOR:	RG			
PROJECT:	Wotland Sitos Toifi V	latlands	CHECKER:	EBP			
	Wetianu Sites - Tein V	vetialius	APPROVER:	0			
SUBJECT:	Brocoss Dosign Coloul	ations Llandword	DATE:	45254			
	Process Design Calcul		DOC. No:	0			
SECTION:	References		SHEET:	4	OF	4	

bnstructed Wetland Design & Specification.pdf

The 'Tanks In Series' (TIS) model assumes that the wetland behaves like a treatment plant with a number of completely mixed tanks connected in series, whereby the contaminant is reduced in each tank. This model considers the concentration of the contaminant (C), the background concentration (C*), the rate of reduction of the contaminant over time (rate coefficient 'k', m/d) and the hydraulic parameter (N = no. of tanks in series). It is an improvement on the PFD model, as N is considered to be a finite number (for plug flow, N = ∞ which is not achievable). However, the TIS model assumes the reduction of a single compound through a treatment wetland, whereas many contaminants such as TN and TP are mixtures of contaminants that break down at different rates. The mixture becomes *weathered*, which is a term used to describe the selective stripping of light volatile materials upon exposure to outdoor environments. Observed weathering behaviour in real wetland situations may be represented by the TIS model, wherein the parameter values are relaxed to become fitting parameters. This 'relaxed' TIS model is known as the P-k-C* model and is defined to be as follows (Kadlec & Wallace 2009):

$$\frac{C_{e} - C^{*}}{C_{i} - C^{*}} = \begin{bmatrix} 1 + k \\ Pq \end{bmatrix}^{P}$$

 C_i = Influent concentration of contaminant (mg/l) C_e = Effluent concentration of contaminant (mg/l)

 C^* = Background concentration of contaminant (ing/i) C^* = Background concentration of contaminant (in the wetland water column) (mg/l)

k = Rate coefficient for reduction of contaminant (m/yr)

P = Apparent no. of tanks in series (PTIS – dimensionless)

q = Hydraulic loading rate (m/yr)

k - C* modelling *Wetland Feasibility, Design and Offsetting (1).pdf

Plug-flow k-C* Model

The plug-flow k-C* model is based on the below equation; large constructed p-control wetlands have been found to fit this description (Kadlec 2016¹¹):

A=(0.0365*Q/k)*In[(Ci-C*)/Ce-C*)]

Where A= Area (ha), Q=design flow (m₃/d), k: apparent rate coefficient (m/year/1), C_i: inlet TP concentration (gP/m3); C*: background Concentration (mgP/I); Ce=Target Effluent Concentration (mg/I)

- (Flows and TP levels modelled are outlined in table 2).
- C_o: The target TP concentration for the wetland is 1mg/l.
- C*: The wetland background concentration is estimated at 0.05mg/l.
- k: The apparent rate coefficient used was 12 m/year.

2IUV					PROJECT No:	30192602			
		CALCUI			GBA:	Resilience -	Resilience - Water		
Ceredigion Cou	unty Council				REVISION:	P01			
					AUTHOR:	RG			
Wetland Sites -	 Teifi Wetland 	IS			CHECKER:	EBP			
					APPROVER:				
Process Design	Calculations -	Llandysul			DATE:	24/11/2023			
Estimated Q, C	urthophosphat	e July 2021 -	Aug 2022		DOC. No:				
Front Sheet					SHEET:	1	OF	4	
TOTAL SHEETSAUTHORDATECHECKED BYDATE4RG29/11/23EBP30/11/23		APPROVED BY	DATE	СОМ	MENTS				
4	RG	29/11/23	EBP	30/11/23	LV	12/01/23			
	I		1						
					· · · · · · · · · · · · · · · · · · ·				
ATEMENT (Inc.	high level des	cription of si	te/process and p	urpose of ca	liculations)				
	Ceredigion Cou Wetland Sites - Process Design Estimated Q, O Front Sheet TOTAL SHEETS 4 A TATEMENT (Inc.	Ceredigion County Council Wetland Sites - Teifi Wetland Process Design Calculations - Estimated Q, Orthophosphate Front Sheet TOTAL AUTHOR 4 RG	CALCUI Ceredigion County Council Wetland Sites - Teifi Wetlands Process Design Calculations - Llandysul Estimated Q, Orthophosphate July 2021 Front Sheet TOTAL AUTHOR DATE 4 RG 29/11/23 1 1 4 RG 29/11/23 1 1	CALCULATIONS Ceredigion County Council Wetland Sites - Teifi Wetlands Process Design Calculations - Llandysul Estimated Q, Orthophosphate July 2021 - Aug 2022 Front Sheet TOTAL AUTHOR SHEETS AUTHOR 4 RG 29/11/23 EBP 1 1 1 1 2 1 4 RG 29/11/23 EBP	CALCULATIONS Ceredigion County Council Wetland Sites - Teifi Wetlands Process Design Calculations - Llandysul Estimated Q, Orthophosphate July 2021 - Aug 2022 Front Sheet TOTAL AUTHOR DATE CHECKED BY DATE 4 RG 29/11/23 EBP 30/11/23 L L AUTHOR L CHECKED BY DATE 4 RG 29/11/23 EBP 30/11/23 L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L R R <td>XDDS CALCULATIONS PROJECT No: GBA: Ceredigion County Council REVISION: AUTHOR: CHECKER: APPROVER: AUTHOR: CHECKER: APPROVER: Wetland Sites - Teifi Wetlands CHECKER: APPROVER: DATE: DOC. No: Front Sheet DOC. No: TOTAL SHEETS AUTHOR DATE CHECKED BY DATE APPROVED BY 4 RG 29/11/23 EBP 30/11/23 LV</td> <td>ADIS CALCULATIONS PROJECT No: 30192602 GBA: Resilience - Ceredigion County Council REVISION: RG Wetland Sites - Teifi Wetlands CHECKER: EBP Process Design Calculations - Llandysul DATE: 24/11/2023 Estimated Q, Orthophosphate July 2021 - Aug 2022 DOC. No: Front Sheet TOTAL AUTHOR DATE CHECKER SHEET: 1 TOTAL AUTHOR DATE CHECKED BY DATE APPROVED BY DATE 4 RG 29/11/23 EBP 30/11/23 LV 12/01/23 4 RG 29/11/23 EBP 30/11/23 LV 12/01/23 CATEMENT (Inc. high level description of site/process and purpose of calculations) TATEMENT (Inc. high level description of site/process and purpose of calculations)</td> <td>ADIS CALCULATIONS PROJECT No: 30192602 GBA: Resilience - Water Revelopion County Council AUTHOR: RG Wetland Sites - Teifi Wetlands AUTHOR: RG Process Design Calculations - Liandysul DATE: 24/11/2023 Estimated Q, Orthophosphate July 2021 - Aug 2022 DOC. No: Process Design Calculations - Liandysul Front Sheet SHEET: 1 OF TOTAL AUTHOR DATE CHECKER: SHEETS AUTHOR DATE COMI 4 RG 29/11/23 EBP 30/11/23 LV 12/01/23 4 RG 29/11/23 EBP 30/11/23 LV 12/01/23 4 RG 29/11/23 EBP 30/11/23 LV 12/01/23 ATE DATE DATE DATE DATE DATE AUTHOR DATE CHECKED BY DATE DATE COMI 4 RG 29/11/23 EBP 30/11/23 LV 12/01/23 ATE DATE DATE DATE DATE<!--</td--></td>	XDDS CALCULATIONS PROJECT No: GBA: Ceredigion County Council REVISION: AUTHOR: CHECKER: APPROVER: AUTHOR: CHECKER: APPROVER: Wetland Sites - Teifi Wetlands CHECKER: APPROVER: DATE: DOC. No: Front Sheet DOC. No: TOTAL SHEETS AUTHOR DATE CHECKED BY DATE APPROVED BY 4 RG 29/11/23 EBP 30/11/23 LV	ADIS CALCULATIONS PROJECT No: 30192602 GBA: Resilience - Ceredigion County Council REVISION: RG Wetland Sites - Teifi Wetlands CHECKER: EBP Process Design Calculations - Llandysul DATE: 24/11/2023 Estimated Q, Orthophosphate July 2021 - Aug 2022 DOC. No: Front Sheet TOTAL AUTHOR DATE CHECKER SHEET: 1 TOTAL AUTHOR DATE CHECKED BY DATE APPROVED BY DATE 4 RG 29/11/23 EBP 30/11/23 LV 12/01/23 4 RG 29/11/23 EBP 30/11/23 LV 12/01/23 CATEMENT (Inc. high level description of site/process and purpose of calculations) TATEMENT (Inc. high level description of site/process and purpose of calculations)	ADIS CALCULATIONS PROJECT No: 30192602 GBA: Resilience - Water Revelopion County Council AUTHOR: RG Wetland Sites - Teifi Wetlands AUTHOR: RG Process Design Calculations - Liandysul DATE: 24/11/2023 Estimated Q, Orthophosphate July 2021 - Aug 2022 DOC. No: Process Design Calculations - Liandysul Front Sheet SHEET: 1 OF TOTAL AUTHOR DATE CHECKER: SHEETS AUTHOR DATE COMI 4 RG 29/11/23 EBP 30/11/23 LV 12/01/23 4 RG 29/11/23 EBP 30/11/23 LV 12/01/23 4 RG 29/11/23 EBP 30/11/23 LV 12/01/23 ATE DATE DATE DATE DATE DATE AUTHOR DATE CHECKED BY DATE DATE COMI 4 RG 29/11/23 EBP 30/11/23 LV 12/01/23 ATE DATE DATE DATE DATE </td	

ARCADIS		CALCULATIO	DNS	PROJECT No:	30192602						
KEY	CLIENT			GBA:	Resilience - Water						
	CLIENT.	Ceredigion County Council			RG						
Input values	PROJECT:			CHECKEB:	EBP						
Calculated values		Wetland Sites - Teifi Wetlands		APPROVER:	0	0					
Linked values	SUBJECT:	Process Design Calculations - Llandysul		DATE: 24/11/2023							
Assumed values		Flocess Design Calculations - Liandysui		DOC. No:	0						
Iterated values	SECTION:	P-k-c		SHEET:	2	OF	4				
Process Calculations											
Parameter	Unit	Value	References/Comments								
C C											
C _{I-TN}	mg/l	25	Influent concentration of Total Nitro	ogen							
C _{I-TP}	rng/1	2.34	Initiation of Total Phos	Spriorus (July 2021 - Aug 2022)							
C ⁺ TN	mg/1	1.5	Background concentration of Total	Nitrogen							
C* _{TP}	mg/I	0.022	Background concentration of lotal Phosphorus								
κ _{τν}	m/yr	11.18	Rate coefficient for reduction of Total Nitrogen								
k _{TP}	m/yr	10	Rate coefficient for reduction of Tot	al Phosphorus							
k _{20-TN}	m/yr	21.5	Median value rate coefficient for ree	duction of Total Nitrogen							
θ _{-TN}	-	1.056	Median Temp coefficient for Total N	litrogen							
θ. _{тр}	-	0.986	Median Temp coefficient for Total P	hosphorus							
Т	°C	8	Average operating temperature								
No. of treatment stages	-	3									
Р	-	6	For one treatment stage i.e. 1 cell in	series/three treatment stages i.e	e 3 cells in series - P is 2 or 6 resp	ectively (conservative value	ue)				
Design Flow	m3/d	369	Input flow rate into here								
Total annual hydraulic	m ³ /ur	134685									
throughput	, yi										
Total wetland area	m²	20,000	Active cell area (i.e. excluding diving	g berms, spreader channels and le	evel control structures)						
q	m/yr	6.73425									
Total Nitrogen											
Amount of remaining	-	5.43	NB. treated discharge from the wetl	and cannot be less than the back	ground concentrations, as it is no	ot possible to achieve i.e.	background conc will always be present				
contaminant, Ce - C*	%	23.09									
Treatment efficiency of wetland	%	76.91	% of contaminant removed								
Amount of remaining		0.62	NR treated discharge from the wetland spapet he less than the background concentrations, as it is not nessible to achieve i.e. background concentrations								
contaminant Ce - C*	-	26.53	No. treated discharge from the wet	and cannot be less than the back	ground concentrations, as it is no	repossible to achieve i.e.	background conc will always be present				
Treatment efficiency of wetland	%	73.47	% of contaminant removed								
reatment enciency of wetland	20	/3.4/	76 of contaminant renioved								

ARCADIS		CALCULATIC	DNS	PROJECT No:	30192602 Resilience - Water					
KEY	CLIENT			BEVISION:	P01					
	CELENT.	Ceredigion County Council		AUTHOR:	RG					
Input values	PROJECT:	Wells of Charles Tells Wells of		CHECKER:	EBP					
Calculated values		wetland Sites - Teiff Wetlands		APPROVER:	0					
Linked values	SUBJECT:	Process Design Calculations - Handysul		DATE: 24/11/2023						
Assumed values		Trocess besign calculations Elandysu		DOC. No:	0					
Iterated values	SECTION:	P-k-c		SHEET:	3	OF	4			
	-									
Process Calculations										
Parameter	Unit	Value	References/Comments							
ć	mg/l	25	Influent concentration of Total Nitro	200						
	mg/l	25	Influent concentration of Total Phos	nborus (July 2021 - Aug 2022)						
C*	mg/1	1.5	Rackground concentration of Total I	Nitrogon						
C*		1.5	Dackground concentration of Total	heer here						
C TP	mg/i	0.022	Background concentration of rotal Phosphorus							
K _{TN}	iii/yr	11.18	Rate coefficient for reduction of Total Nitrogen							
K _{TP}	m/yr	10	Rate coefficient for reduction of Tot	al Phosphorus						
k _{20-TN}	m/yr	21.5	Median value rate coefficient for rec	duction of Total Nitrogen						
θ _{-τN}	-	1.056	Median Temp coefficient for Total N	litrogen						
θ _{-τ}		0.986	Median Temp coefficient for Total P	hosphorus						
Т	°C	8	Average operating temperature							
No. of treatment stages		3								
Р	-	6	For one treatment stage i.e. 1 cell in	series/three treatment stages i.e	3 cells in series - P is 2 or 6 resp	ectively (conservative value	ue)			
Design Flow	m3/d	369	Input flow rate into here							
Total annual hydraulic	m ³ /vr	134685								
throughput										
Total wetland area	m [*]	10,000	Active cell area (i.e. excluding diving	berms, spreader channels and lev	vel control structures)					
q	m/yr	13.4685								
Total Nitrogen										
Amount of remaining	-	10.80	NB. treated discharge from the wetl	and cannot be less than the backg	ground concentrations, as it is no	ot possible to achieve i.e.	background conc will always be present			
contaminant, Ce - C*	%	45.95								
Treatment efficiency of wetland	%	54.05	% of contaminant removed							
Amount of remaining		1 15								
contaminant Ce - C*	-	1.15	ND. LIEALEU UISCHAIge ITOM LIE WELL	and cannot be less than the backg	giouna concentrations, dS IL IS N	or possible to achieve i.e.	Dackground colle will diways be present			
Treatment efficiency of wetland	%	50.34	% of contaminant removed							
meatment enciency of wetland	70	50.34	% or contaminant removed							

6 ^			PROJECT No:	3019260	2		
/-	ARUADIS	CALCULATIONS	GBA:	Resilienc	e - Water		
CLIENT:		uncil	REVISION:	P01			
	Cerealgion County Co	dici	AUTHOR:	RG			
PROJECT:	Wotland Sitos Toifi V	Votlands	CHECKER:	EBP			
	Wetianu Sites - Tein V	vetialius	APPROVER:	0			
SUBJECT:	Brocoss Design Calcul	ations Llandwoul	DATE:	45254			
	Process Design Calcul		DOC. No:	0			
SECTION:	References		SHEET:	4	OF	4	

bnstructed Wetland Design & Specification.pdf

The 'Tanks In Series' (TIS) model assumes that the wetland behaves like a treatment plant with a number of completely mixed tanks connected in series, whereby the contaminant is reduced in each tank. This model considers the concentration of the contaminant (C), the background concentration (C*), the rate of reduction of the contaminant over time (rate coefficient 'k', m/d) and the hydraulic parameter (N = no. of tanks in series). It is an improvement on the PFD model, as N is considered to be a finite number (for plug flow, N = ∞ which is not achievable). However, the TIS model assumes the reduction of a single compound through a treatment wetland, whereas many contaminants such as TN and TP are mixtures of contaminants that break down at different rates. The mixture becomes *weathered*, which is a term used to describe the selective stripping of light volatile materials upon exposure to outdoor environments. Observed weathering behaviour in real wetland situations may be represented by the TIS model, wherein the parameter values are relaxed to become fitting parameters. This 'relaxed' TIS model is known as the P-k-C* model and is defined to be as follows (Kadlec & Wallace 2009):

 C_i = Influent concentration of contaminant (mg/l)

- $\label{eq:ce} C_e = \text{Effluent concentration of contaminant (mg/l)} \\ C^* = \text{Background concentration of contaminant (in the wetland water column) (mg/l)}$
- k = Rate coefficient for reduction of contaminant (m/yr)
- P = Apparent no. of tanks in series (PTIS dimensionless)

q = Hydraulic loading rate (m/yr)

k - C* modelling *Wetland Feasibility, Design and Offsetting (1).pdf

Plug-flow k-C* Model

The plug-flow k-C* model is based on the below equation; large constructed p-control wetlands have been found to fit this description (Kadlec 2016¹¹):

A=(0.0365*Q/k)*In[(Ci-C*)/Ce-C*)]

Where A= Area (ha), Q=design flow (m₃/d), k: apparent rate coefficient (m/year/1), C: inlet TP concentration (gP/m3); C*: background Concentration (mgP/l); Ce=Target Effluent Concentration (mg/l)

- (Flows and TP levels modelled are outlined in table 2).
- Co: The target TP concentration for the wetland is 1mg/l.
- C*: The wetland background concentration is estimated at 0.05mg/l.
- k: The apparent rate coefficient used was 12 m/year.

						PROJECT No:	30192602		
			CALCUI			GBA:	Resilience -	Water	
CLIENT:	Ceredigion Cou	unty Council				REVISION:	P01		
			7			AUTHOR:	RG		
PROJECT:	Wetland Sites	- Teifi Wetland	ls			CHECKER:	EBP		
						APPROVER:			
SUBJECT:	Process Design	Calculations -	Llandysul			DATE:	24/11/2023		
	Estimated Q, B	ackstop TP				DOC. No:			
SECTION:	Front Sheet					SHEET:	1	OF	4
ISSUE	TOTAL SHEETS	AUTHOR	DATE	CHECKED BY	DATE	APPROVED BY	DATE	COMM	MENTS
P01	4	RG	29/11/23	EBP	30/11/23	LV	12/01/23		
	T I				Γ		\Box	_	
DÉSIGN BASIS	STATEMENT (Inc.	high level des	cription of si	te/process and p	urpose of ca	lculations)			

ARCADIS		CALCULATIO	DNS	PROJECT No:	30192602 Resilience - Water				
KEY	CLIENT			BEVISION:	PO1				
	CELENT:	Ceredigion County Council		AUTHOR	RG				
Input values	PROJECT:	Wells of Charles Table Manhaoda		CHECKER:	EBP				
Calculated values		wetland Sites - Teiff Wetlands		APPROVER:	0				
Linked values	SUBJECT:	Process Design Calculations - Llandysul		DATE: 24/11/2023					
Assumed values		Trocess besign calculations Elandysa		DOC. No:	0				
Iterated values	SECTION:	P-k-c		SHEET:	2	OF	4		
	-								
Process Calculations									
Parameter	Unit	Value	References/Comments						
C	mg/l	25	Influent concentration of Total Nitr	ogon					
C _{I-TN}	mg/l	25	Influent concentration of Total Pho	sphorus (Backston TP)					
C*	mg/l	15	Background concentration of Total	Nitrogen					
C*		0.022	Background concentration of Total	Phosphorus					
C TP	mg/i	11 19	Background concentration of Total	tal Nitrogon					
KTN I.	111/yi	11.10							
K _{TP}	m/yr	10	Rate coefficient for reduction of 10	tal Phosphorus					
К _{20-ТN}	m/yr	21.5	Median value rate coefficient for re	duction of Lotal Nitrogen					
0 _{-TN}	-	1.056	Median Temp coefficient for Total I	Nitrogen					
θ_ΤΡ	-	0.986	Median Temp coefficient for Total F	Phosphorus					
Ť	°C	8	Average operating temperature						
No. of treatment stages	-	3							
p Datis		6	For one treatment stage i.e. 1 cell in	n series/three treatment stages i.e	e 3 cells in series - P is 2 or 6 respe	ctively (conservative valu	e)		
Design Flow	m3/d	369	input flow rate into here						
throughput	m³/yr	134685							
Total wetland area	m ²	20.000	Active cell area (i.e. excluding divin	g berms, spreader chappels and le	wel control structures)				
		6 72425	Active cell area (i.e. excluding diving	g bernis, spreader channels and le	ver control structures)				
q	m/yr	6.73425							
Total Nitrogen									
Amount of remaining	-	5.43	NB. treated discharge from the wet	land cannot be less than the back	ground concentrations, as it is no	possible to achieve i.e. b	ackground conc will always be present		
contaminant, Ce - C*	%	23.09							
Treatment efficiency of wetland	%	76.91	% of contaminant removed						
Total Phosphorus		1.22	ND treated discharge from the cost	land second by lass they the bard	and an		entered and will always be assessed		
Amount of remaining	-	1.32	NB. treated discharge from the wet	liand cannot be less than the back	ground concentrations, as it is no	. possible to achieve i.e. b	ackground conc will always be present		
Treatment efficiency of wetland	70	20.53	% of contaminant removed						
reatment enciency of wetland	20	/5.4/	20 OF CONtaminant rendoved						

ARCADIS		CALCULATIC	DNS	PROJECT No:	30192602 Resilience - Water					
KEY	CLIENT:			BEVISION:	PO1					
		Ceredigion County Council		AUTHOR:	RG					
Input values	PROJECT:	Watland Cites Taifi Watlands		CHECKER:	EBP					
Calculated values		wetland Sites - Telli Wetlands		APPROVER:	0					
Linked values	SUBJECT:	Process Design Calculations - Handysul		DATE:	DATE: 24/11/2023					
Assumed values				DOC. No:	0					
Iterated values	SECTION:	P-k-c		SHEET:	3	OF	4			
Process Calculations										
Parameter	Unit	Value	References/Comments							
E	mg/l	25	Influent concentration of Total Nitr	organ						
Ci-m	mg/l	25	Influent concentration of Total Pho	ogen osphorus (Backston TP)						
C*	mg/l	15	Background concentration of Total	Nitrogen						
C*		0.022	Background concentration of Total	Phosphorus						
C TP	mg/i	11 19	Bate coefficient for reduction of Total	tal Nitrogan						
KTN k	iii/yi	11.18	Rate coefficient for reduction of To							
K _{TP}	m/yr	10	Rate coefficient for reduction of 10	tai Phosphorus						
к _{20-тN}	m/yr	21.5	Median value rate coefficient for re	duction of Lotal Nitrogen						
0. _{TN}	-	1.056	Median Temp coefficient for Total	Nitrogen						
θ _{-TP}	-	0.986	Median Temp coefficient for Total	Phosphorus						
T	°C	8	Average operating temperature							
No. of treatment stages	-	3	F							
P Design Flow		6	For one treatment stage i.e. 1 cell i	n series/three treatment stages i.e	3 cells in series - P is 2 or 6 resp	ectively (conservative value	ue)			
Design Flow Total appual hydraulic	mayd	309	input now rate into here							
throughout	m³/yr	134685								
Total wetland area	m ²	10.000	Active cell area (i.e. excluding divin	g berms spreader chappels and le	vel control structures)					
	m hrs	13 4695	Active cell area (i.e. excluding divin	g bernis, spreader enamiels and le	ver control structures,					
Ч	117.91	15.4065								
Total Nitrogen										
Amount of remaining	-	10.80	NB. treated discharge from the wet	tland cannot be less than the back	ground concentrations, as it is n	ot possible to achieve i.e. I	background conc will always be present			
contaminant, Ce - C*	%	45.95								
Treatment efficiency of wetland	%	54.05	% of contaminant removed							
Total Phosphorus										
Amount of remaining	-	2.47	NB, treated discharge from the wet	tland cannot be less than the back	ground concentrations, as it is n	ot possible to achieve i.e. I	background conc will always be present			
contaminant. Ce - C*	%	49.66	the course assenting from the wet		Joneen a dons, dont 15 h		g			
Treatment efficiency of wetland	%	50.34	% of contaminant removed							
,,										

			PROJECT No:	3019260	2		
-	ARUADIS	CALCOLATIONS	GBA:	Resilienc	e - Water		
CLIENT:		uncil	REVISION:	P01			
	Cerealgion County Co	dici	AUTHOR:	RG			
PROJECT:	Wotland Sitos Toifi V	Votlands	CHECKER:	EBP			
	Wetianu Sites - Tenri V	vetialius	APPROVER:	0			
SUBJECT:	Brocoss Design Calcul	ations Llandwoul	DATE:	45254			
	Process Design Calcul		DOC. No:	0			
SECTION:	References		SHEET:	4	OF	4	

bnstructed Wetland Design & Specification.pdf

The 'Tanks In Series' (TIS) model assumes that the wetland behaves like a treatment plant with a number of completely mixed tanks connected in series, whereby the contaminant is reduced in each tank. This model considers the concentration of the contaminant (C), the background concentration (C*), the rate of reduction of the contaminant over time (rate coefficient 'k', m/d) and the hydraulic parameter (N = no. of tanks in series). It is an improvement on the PFD model, as N is considered to be a finite number (for plug flow, N = ∞ which is not achievable). However, the TIS model assumes the reduction of a single compound through a treatment wetland, whereas many contaminants such as TN and TP are mixtures of contaminants that break down at different rates. The mixture becomes *weathered*, which is a term used to describe the selective stripping of light volatile materials upon exposure to outdoor environments. Observed weathering behaviour in real wetland situations may be represented by the TIS model, wherein the parameter values are relaxed to become fitting parameters. This 'relaxed' TIS model is known as the P-k-C* model and is defined to be as follows (Kadlec & Wallace 2009):

 C_i = Influent concentration of contaminant (mg/l)

- Ce = Effluent concentration of contaminant (mg/l)
- C* = Background concentration of contaminant (in the wetland water column) (mg/l) k = Rate coefficient for reduction of contaminant (m/vr)
- P = Apparent no. of tanks in series (*P*TIS dimensionless)

q = Hydraulic loading rate (m/yr)

k - C* modelling *Wetland Feasibility, Design and Offsetting (1).pdf

Plug-flow k-C* Model

The plug-flow k-C* model is based on the below equation; large constructed p-control wetlands have been found to fit this description (Kadlec 2016¹¹):

A=(0.0365*Q/k)*In[(Ci-C*)/Ce-C*)]

Where A= Area (ha), Q=design flow (m₃/d), k: apparent rate coefficient (m/year/1), C:: inlet TP concentration (gP/m3); C*: background Concentration (mgP/I); Ce=Target Effluent Concentration (mg/I)

- (Flows and TP levels modelled are outlined in table 2).
- C_o: The target TP concentration for the wetland is 1mg/l.
- C*: The wetland background concentration is estimated at 0.05mg/l.
- k: The apparent rate coefficient used was 12 m/year.

Appendix B Refined Wetlands Analysis with P-K-C* Model – Adpar

						PROJECT No:	30192602			
	JADIS		CALCUI			GBA:	Resilience -	Water		
CLIENT:	Ceredigion Cou	unty Council				REVISION:	P01			
						AUTHOR:	RG			
PROJECT:	Wetland Sites	- Teifi Wetland	S			CHECKER:	EBP			
						APPROVER:				
SUBJECT:	Process Design	Calculations -	Adpar			DATE:	29/11/2023			
	Permitted Q, C	ci 1.7 (2022 P p	erformance)			DOC. No:				
SECTION:	Front Sheet			SHEET:	1	OF	4			
ISSUE	TOTAL SHEETS	AUTHOR	DATE	CHECKED BY	DATE	APPROVED BY	DATE	COMI	MENTS	
P01	4	RG	29/11/23	EBP	30/11/23	LV	12/01/23			
	T		\Box				T I	_		
DÉSIGN BASIS S	STATEMENT (Inc.	high level des	cription of si	te/process and p	urpose of ca	Iculations)				

ARCADIS		CALCULATIC	DNS	PROJECT No:	30192602 Recilience - Water				
KEY	CLIENT:			BEVISION:	P01				
		Ceredigion County Council		AUTHOR:	RG				
Input values	PROJECT:	Wetland Sites - Teifi Wetlands		CHECKER:	EBP				
Calculated values		wettand sites - Tent wettands		APPROVER:	0				
Linked values	SUBJECT:	Process Design Calculations - Adpar		DATE: 29/11/2023					
Assumed values				DOC. No:	0				
iterated values	SECTION:	P-k-c		SHEET:	2	OF	4		
Process Calculations									
Parameter	Unit	Value	References/Comments						
Grav	mg/l	25	Influent concentration of Total Nit	rogen					
CLTP	mg/l	1.7	Influent concentration of Total Pho	osphorus (2022 P performance)					
C* _{TM}	mg/l	1.5	Background concentration of Total	Nitrogen					
C*	mg/l	0.022	Background concentration of Total	Phosphorus					
k _{mi}	m/vr	11 18	Rate coefficient for reduction of To	tal Nitrogen					
k	m/vr	10	Rate coefficient for reduction of To	tal Phosphorus					
kan an	m/vr	21.5	Median value rate coefficient for r	eduction of Total Nitrogen					
A	, ,,	1.056	Median Temp coefficient for Total	Nitrogen					
e		0.986	Median Temp coefficient for Total	Phosphorus					
т	*	0.580		riospilorus					
No. of treatment stages	-	3	Average operating temperature						
P	-	6	For one treatment stage i.e. 1 cell i	n series/three treatment stages i.e	e 3 cells in series - P is 2 or 6 resp	ectively (conservative val	ue)		
Design Flow	m3/d	535	Input flow rate into here)		
Total annual hydraulic	3,	105.275							
throughput	m /yr	195275							
Total wetland area	m²	10,000	Active cell area (i.e. excluding divir	g berms, spreader channels and le	evel control structures)				
q	m/yr	19.5275							
Total Nitrogen									
Amount of remaining	-	13.60	NB. treated discharge from the we	tland cannot be less than the back	ground concentrations, as it is no	ot possible to achieve i.e.	background conc will always be present		
contaminant, Ce - C*	%	57.88							
Treatment efficiency of wetland	N %	42.12	% of contaminant removed						
Total Phosphorus									
Amount of remaining	-	1.03	NB. treated discharge from the we	tland cannot be less than the back	ground concentrations, as it is no	ot possible to achieve i.e.	background conc will always be present		
contaminant, Ce - C*	%	61.18			• • • • • • • • •		- · · · · · · · · · · · · · · · · · · ·		
Treatment efficiency of wetland	۶ ۱	38.82	% of contaminant removed						

ARCADIS		CALCULATIC	DNS	PROJECT No:	30192602 Resilience - Water					
KEY	CLIENT			BEVISION:	P01					
		Ceredigion County Council		AUTHOR:	RG					
Input values	PROJECT:	Watland Sites Taifi Watlands		CHECKER:	EBP					
Calculated values		wetland Sites - Telli Wetlands		APPROVER:	0					
Linked values	SUBJECT:	Process Design Calculations - Adpar		DATE:	DATE: 29/11/2023					
Assumed values				DOC. No:	0					
Iterated values	SECTION:	P-k-c		SHEET:	3	OF	4			
Process Calculations										
Parameter	Unit	Value	References/Comments							
C _{I-TN}	mg/l	25	Influent concentration of Total Nit	rogen						
C _{i-TP}	mg/l	1.7	Influent concentration of Total Pho	osphorus (2022 P performance)						
C* _{TN}	mg/l	1.5	Background concentration of Total	Nitrogen						
C* _{TP}	mg/l	0.022	Background concentration of Total	Phosphorus						
k _{TN}	m/yr	11.18	Rate coefficient for reduction of To	otal Nitrogen						
k _{τp}	m/vr	10	Rate coefficient for reduction of To	otal Phosphorus						
k _{20.TN}	m/vr	21.5	Median value rate coefficient for re	eduction of Total Nitrogen						
θτη	-	1.056	Median Temp coefficient for Total	Nitrogen						
θπ	-	0.986	Median Temp coefficient for Total	Phosphorus						
Т	°C	8	Average operating temperature							
No. of treatment stages	-	3	······································							
P	-	6	For one treatment stage i.e. 1 cell	in series/three treatment stages i.e	3 cells in series - P is 2 or 6 resp	ectively (conservative val	ue)			
Design Flow	m3/d	535	Input flow rate into here							
Total annual hydraulic	³ (105275								
throughput	ffi /yr	1992/19								
Total wetland area	m²	5,000	Active cell area (i.e. excluding divir	ng berms, spreader channels and le	evel control structures)					
q	m/yr	39.055								
Total Nitrogen										
Amount of remaining	-	17.77	NB. treated discharge from the we	tland cannot be less than the back	ground concentrations, as it is no	ot possible to achieve i.e.	background conc will always be present			
contaminant, Ce - C*	%	75.60								
Treatment efficiency of wetland	%	24.40	% of contaminant removed							
Total Phosphorus										
Amount of remaining	-	1.31	NB. treated discharge from the we	tland cannot be less than the back	ground concentrations, as it is no	ot possible to achieve i.e.	background conc will always be present			
contaminant, Ce - C*	%	77.82								
Treatment efficiency of wetland	%	22.18	% of contaminant removed							

			PROJECT No:	3019260	2		
	ARUADIS	CALCULATIONS	GBA:	Resilienc	e - Water		
CLIENT:		uncil	REVISION:	P01			
	Cerealgion County Co		AUTHOR:	RG			
PROJECT:	Wotland Sitos Toifi V	latlands	CHECKER:	EBP			
	Wetianu Sites - Tenri V	Vetialius	APPROVER:	0			
SUBJECT:	Process Design Calcul	ations Adnor	DATE:	45259			
	Process Design Calcul	ations - Aupai	DOC. No:	0			
SECTION:	References		SHEET:	4	OF	4	

bnstructed Wetland Design & Specification.pdf

The 'Tanks In Series' (TIS) model assumes that the wetland behaves like a treatment plant with a number of completely mixed tanks connected in series, whereby the contaminant is reduced in each tank. This model considers the concentration of the contaminant (C), the background concentration (C*), the rate of reduction of the contaminant over time (rate coefficient 'k', m/d) and the hydraulic parameter (N = no. of tanks in series). It is an improvement on the PFD model, as N is considered to be a finite number (for plug flow, N = ∞ which is not achievable). However, the TIS model assumes the reduction of a single compound through a treatment wetland, whereas many contaminants such as TN and TP are mixtures of contaminants that break down at different rates. The mixture becomes *weathered*, which is a term used to describe the selective stripping of light volatile materials upon exposure to outdoor environments. Observed weathering behaviour in real wetland situations may be represented by the TIS model is known as the P-k-C* model and is defined to be as follows (Kadlec & Wallace 2009):

$$\frac{C_{e} - C^{*}}{C_{i} - C^{*}} = \left[\begin{array}{c} 1 + \frac{k}{Pq} \right]^{-p}$$

 C_i = Influent concentration of contaminant (mg/l) C_e = Effluent concentration of contaminant (mg/l)

 C^* = Background concentration of contaminant (ing/) C^* = Background concentration of contaminant (in the wetland water column) (mg/l)

k = Rate coefficient for reduction of contaminant (m/yr)

P = Apparent no. of tanks in series (PTIS – dimensionless)

q = Hydraulic loading rate (m/yr)

k - C* modelling *Wetland Feasibility, Design and Offsetting (1).pdf

Plug-flow k-C* Model

The plug-flow k-C* model is based on the below equation; large constructed p-control wetlands have been found to fit this description (Kadlec 2016¹¹):

A=(0.0365*Q/k)*In[(Ci-C*)/Ce-C*)]

Where A= Area (ha), Q=design flow (m₃/d), k: apparent rate coefficient (m/year/1), C:: inlet TP concentration (gP/m3); C*: background Concentration (mgP/I); Ce=Target Effluent Concentration (mg/I)

- (Flows and TP levels modelled are outlined in table 2).
- C_o: The target TP concentration for the wetland is 1mg/l.
- C*: The wetland background concentration is estimated at 0.05mg/l.
- k: The apparent rate coefficient used was 12 m/year.

						PROJECT No:	30192602		
	UADIS		CALCUI			GBA:	Resilience -	Water	
CLIENT:	Ceredigion Cou	inty Council				REVISION:	P01		
						AUTHOR:	RG		
PROJECT:	Wetland Sites -	 Teifi Wetland 	s			CHECKER:	EBP		
						APPROVER:			
SUBJECT:	Process Design	Calculations -	Adpar			DATE:	29/11/2023		
Permitted Q, Ci 4.8 (2021			erformance)			DOC. No:			
SECTION:	Front Sheet		SHEET:	1	OF	4			
ISSUE	TOTAL SHEETS	TOTAL SHEETS AUTHOR DATE CHECKED BY DATE APPROV 4 RG 29/11/23 EBP 30/11/23 LV		APPROVED BY	DATE	СОММ	ENTS		
P01	4	RG	29/11/23	EBP	30/11/23	LV	12/01/23		
DESIGN BASIS	STATEMENT (Inc.	high level des	cription of si	te/process and p	urpose of ca	alculations)			

ARCADIS		CALCULATIC	DNS	PROJECT No:	30192602 Resilience - Water					
KEY	CLIENT			BBA: REVISION	PO1					
		Ceredigion County Council		AUTHOR:	RG					
Input values	PROJECT:	Watland Sites Taifi Watlands		CHECKER:	EBP					
Calculated values		wetland Sites - Telli Wetlands		APPROVER:	0					
Linked values	SUBJECT:	Process Design Calculations -Adpar		DATE:	NTE: 29/11/2023					
Assumed values		······································		DOC. No:	0					
Iterated values	SECTION:	P-k-c		SHEET:	2	OF	4			
Process Calculations										
Parameter	Unit	Value	References/Comments							
C _{L-TN}	mg/l	25	Influent concentration of Total Nit	rogen						
C _{i-TP}	mg/l	4.8	Influent concentration of Total Pho	osphorus (2021 P performance)						
C* _{TN}	mg/l	1.5	Background concentration of Tota	Nitrogen						
C* _{TP}	mg/l	0.022	Background concentration of Tota	Phosphorus						
k _{TN}	m/yr	11.18	Rate coefficient for reduction of To	otal Nitrogen						
k _{tp}	m/yr	10	Rate coefficient for reduction of To	otal Phosphorus						
k _{20.TN}	m/yr	21.5	Median value rate coefficient for n	eduction of Total Nitrogen						
θτη	-	1.056	Median Temp coefficient for Total	Nitrogen						
θπ	-	0.986	Median Temp coefficient for Total	Phosphorus						
Т	°C	8	Average operating temperature							
No. of treatment stages	_	3								
P	-	6	For one treatment stage i.e. 1 cell	in series/three treatment stages i.	e 3 cells in series - P is 2 or 6 resp	ectively (conservative val	ue)			
Design Flow	m3/d	535	Input flow rate into here							
Total annual hydraulic	m^3/m	195275								
throughput	111 / ¥1	155275								
Total wetland area	m²	10,000	Active cell area (i.e. excluding divir	ng berms, spreader channels and le	evel control structures)					
q	m/yr	19.5275								
Total Nitrogen										
Amount of remaining	-	13.60	NB. treated discharge from the we	tland cannot be less than the back	kground concentrations, as it is no	ot possible to achieve i.e.	background conc will always be present			
contaminant, Ce - C*	%	57.88								
Treatment efficiency of wetland	%	42.12	% of contaminant removed							
Total Phosphorus										
Amount of remaining	-	2.92	NB. treated discharge from the we	tland cannot be less than the back	kground concentrations, as it is no	ot possible to achieve i.e.	background conc will always be present			
contaminant, Ce - C*	%	61.18								
Treatment efficiency of wetland	%	38.82	% of contaminant removed							
GARCADIS			ONS	PROJECT No:	30192602					
---------------------------------	----------	------------------------------------	---------------------------------------	--------------------------------------	---	-------------------------------	-------------------------------------	--	--	
		0,12002,1110		GBA:	Resilience - Water					
KEY	CLIENT:	Ceredigion County Council		REVISION:	P01					
Input values	DROJECT:				EPD					
Calculated values	PROJECT.	Wetland Sites - Teifi Wetlands			0					
Linked values	SUBJECT:			DATE:	29/11/2023					
Assumed values		Process Design Calculations -Adpar		DOC. No:	0					
Iterated values	SECTION:	P-k-c		SHEET:	3	OF	4			
	_									
Process Calculations										
Parameter	Unit	Value	References/Comments							
CI-TN	mg/l	25	Influent concentration of Total Ni	trogen						
C _{I-TP}	mg/l	4.8	Influent concentration of Total Ph	osphorus (2021 P performance)						
C* _{TN}	mg/l	1.5	Background concentration of Tota	al Nitrogen						
С*тр	mg/l	0.022	Background concentration of Tota	al Phosphorus						
k _{IN}	m/yr	11.18	Rate coefficient for reduction of T	otal Nitrogen						
k _{to}	m/vr	10	Rate coefficient for reduction of T	otal Phosphorus						
K20 TN	m/yr	21.5	Median value rate coefficient for	reduction of Total Nitrogen						
θ m	-	1.056	Median Temp coefficient for Tota	Nitrogen						
тм А-т		0.986	Median Temp coefficient for Tota	Phosphorus						
т	°C	8		i nosphorus						
No. of treatment stages	-	3	Average operating temperature							
P	-	6	For one treatment stage i.e. 1 cell	in series/three treatment stages i.e	e 3 cells in series - P is 2 or 6 respe	ctively (conservative value)				
Design Flow	m3/d	535	Input flow rate into here			,				
Total annual hydraulic	3,	105.275								
throughput	m /yr	195275								
Total wetland area	m²	5,000	Active cell area (i.e. excluding divi	ng berms, spreader channels and le	evel control structures)					
q	m/yr	39.055								
Total Nitrogen										
Amount of remaining	-	17.77	NB. treated discharge from the w	etland cannot be less than the back	ground concentrations, as it is not	possible to achieve i.e. back	kground conc will always be present			
contaminant, Ce - C*	%	75.60								
Treatment efficiency of wetland	i %	24.40	% of contaminant removed							
·										
Total Phosphorus										
Amount of remaining	-	3.72	NB. treated discharge from the w	etland cannot be less than the back	ground concentrations, as it is not	possible to achieve i.e. back	kground conc will always be present			
contaminant, Ce - C*	%	77.82								
Treatment efficiency of wetland	1 %	22.18	% of contaminant removed							

			PROJECT No:	3019260)2		
/-	ARUADIS	CALCULATIONS	GBA:	Resilienc	e - Water		
CLIENT:	Corodigion County Co	uncil	REVISION:	P01			
	Cerealgion County Co		AUTHOR:	RG			
PROJECT:	Wotland Sitos Toifi V	Votlands	CHECKER:	EBP			
	Wetianu Sites - Tein V	vetialius	APPROVER:	0			
SUBJECT:	Brocoss Design Calcul	ations Adnar	DATE:	45259			
	Process Design Calcul		DOC. No:	0			
SECTION:	References		SHEET:	4	OF	4	

bnstructed Wetland Design & Specification.pdf

The 'Tanks In Series' (TIS) model assumes that the wetland behaves like a treatment plant with a number of completely mixed tanks connected in series, whereby the contaminant is reduced in each tank. This model considers the concentration of the contaminant (C), the background concentration (C*), the rate of reduction of the contaminant over time (rate coefficient 'k', m/d) and the hydraulic parameter (N = no. of tanks in series). It is an improvement on the PFD model, as N is considered to be a finite number (for plug flow, N = ∞ which is not achievable). However, the TIS model assumes the reduction of a single compound through a treatment wetland, whereas many contaminants such as TN and TP are mixtures of contaminants that break down at different rates. The mixture becomes *weathered*, which is a term used to describe the selective stripping of light volatile materials upon exposure to outdoor environments. Observed weathering behaviour in real wetland situations may be represented by the TIS model is known as the P-k-C* model and is defined to be as follows (Kadlec & Wallace 2009):

$$\frac{C_{e} - C^{*}}{C_{i} - C^{*}} = \left[\begin{array}{c} 1 + \frac{k}{Pq} \right]^{-P}$$

 C_i = Influent concentration of contaminant (mg/l)

- C_e = Effluent concentration of contaminant (mg/l) C^* = Background concentration of contaminant (in the wetland water column) (mg/l)
- k = Rate coefficient for reduction of contaminant (m/yr)
- P = Apparent no. of tanks in series (PTIS dimensionless)

q = Hydraulic loading rate (m/yr)

k - C* modelling *Wetland Feasibility, Design and Offsetting (1).pdf

Plug-flow k-C* Model

The plug-flow k-C* model is based on the below equation; large constructed p-control wetlands have been found to fit this description (Kadlec 2016¹¹):

A=(0.0365*Q/k)*In[(Ci-C*)/Ce-C*)]

Where A= Area (ha), Q=design flow (m₃/d), k: apparent rate coefficient (m/year/1), C:: inlet TP concentration (gP/m3); C*: background Concentration (mgP/I); Ce=Target Effluent Concentration (mg/I)

- (Flows and TP levels modelled are outlined in table 2).
- C_o: The target TP concentration for the wetland is 1mg/l.
- (C*: The wetland background concentration is estimated at 0.05mg/l.
- k: The apparent rate coefficient used was 12 m/year.

						PROJECT No:	30192602		
	JADIS		CALCUI			GBA:	Resilience -	Water	
CLIENT:	Ceredigion Cou	unty Council				REVISION:	P01		
						AUTHOR:	RG		
PROJECT:	Wetland Sites	- Teifi Wetland	S			CHECKER:	EBP		
						APPROVER:			
SUBJECT:	Process Design	Calculations -	Adpar			DATE:	29/11/2023	,	
	Estimated Q, C	;i 1.7 (2022 P pe	erformance)			DOC. No:			
SECTION:	Front Sheet					SHEET:	1	OF	4
ISSUE	TOTAL SHEETS	AUTHOR	DATE	CHECKED BY	DATE	APPROVED BY	DATE	COMI	VIENTS
P01	4	RG	29/11/23	EBP	30/11/23	LV	12/01/23		
					1				
DESIGN BASIS	STATEMENT (Inc.	high level des	cription of si	te/process and p	urpose of ca	lculations)			

ARCADIS		CALCULATIO	INS	PROJECT No:	30192602			
KEY	CLIENT:			GBA:	Resilience - Water			
KL1	CLIENT:	Ceredigion County Council		REVISION:	PO1 BG			
Input values	PROJECT:			CHECKER	FBP			
Calculated values	i noizeit.	Wetland Sites - Teifi Wetlands		APPROVER:	0			
Linked values	SUBJECT:			DATE:	29/11/2023			
Assumed values		Process Design Calculations - Adpar		DOC. No:	0			
Iterated values	SECTION:	P-k-c		SHEET:	2	OF	4	
				•				
Process Calculations								
Doromotor	-	Value	Deferences /Commonts					
Parameter	Oliit	Value	References/Comments	-				
CI-TM	mg/l	25	Influent concentration of Total Nitroger					
C _{I-TP}	mg/l	1.7	Influent concentration of Total Phospho	rus (2022 P performance)				
С*ты	mg/l	1.5	Background concentration of Total Nitro	gen				
С*тр	mg/l	0.022	Background concentration of Total Pho	phorus				
km	m/vr	11.18	Rate coefficient for reduction of Total N	itrogen				
K TO	m/yr	10	Rate coefficient for reduction of Total P	hosphorus				
Kan	m/yr	21.5	Median value rate coefficient for reduct	ion of Total Nitrogen				
×20-1N	, y.	1 056	Median Temp coefficient for Total Nitro					
0 _{-TN}	-	1.056	Median Temp coefficient for Total Nico	gen 				
0 _{-TP}	-	0.986	Median Temp coefficient for Total Phos	phorus				
No. of treatment stages	٠ر	8	Average operating temperature					
NO. OF treatment stages	-	5	For one treatment stage i.e. 1 cell in ser	ies/three treatment stages i e 3 cells in	series - P is 2 or 6 respe	tively (conservative value)		
P Design Flow	- m3/d	488	Input flow rate into here	les/ three treatment stages i.e 5 cens in	i series - r is z or o respec			
Total annual hydraulic	ins/d	400	input now rate into here					
throughput	m³/yr	178120						
Total wetland area	m ²	10.000	Active cell area (i.e. excluding diving be	rms spreader channels and level contr	ol structures)			
0	m/vr	17 812			,			
4	, ;.	1/1012						
Total Nitrogen								
Amount of remaining	-	12 94	NB treated discharge from the wetland	cannot be less than the background co	ncentrations as it is not i	oossible to achieve i.e. backø	round conc will always be present	
contaminant, Ce - C*	%	55.05			,		,	
Treatment efficiency of wetland	%	44.95	% of contaminant removed					
Total Phosphorus								
Amount of remaining	-	0.98	NB. treated discharge from the wetland	cannot be less than the background co	oncentrations, as it is not p	oossible to achieve i.e. backg	round conc will always be present	
contaminant, Ce - C*	%	58.47						
Treatment efficiency of wetland	%	41.53	% of contaminant removed					

ARCADIS		CALCULATIONS	S	PROJECT No:	30192602 Besilience - Water		
KEY	CLIENT:			BEVISION:	P01		
		Ceredigion County Council		AUTHOR:	RG		
Input values	PROJECT:	Well-steps Tribuch		CHECKER:	EBP		
Calculated values		Wetland Sites - Telfi Wetlands		APPROVER:	0		
Linked values	SUBJECT:	Process Design Calculations - Adnar		DATE:	29/11/2023		
Assumed values		Process Design Calculations - Aupai		DOC. No:	0		
Iterated values	SECTION:	P-k-c		SHEET:	3	OF	4
Process Calculations							
Parameter	Unit	Value	References/Comments				
CI-TN	mg/l	25	Influent concentration of Total Nitrog	en (2022 P			
C _{LTP}	mg/i	1.7	Influent concentration of Total Phosp	norus (2022 P performance)			
C* _{TN}	mg/l	1.5	Background concentration of Total N	trogen			
C* _{TP}	mg/l	0.022	Background concentration of Total Pl	osphorus			
k _{tn}	m/yr	11.18	Rate coefficient for reduction of Tota	Nitrogen			
k _{TP}	m/yr	10	Rate coefficient for reduction of Tota	Phosphorus			
k _{20-TN}	m/yr	21.5	Median value rate coefficient for red	ction of Total Nitrogen			
0-TN	-	1.056	Median Temp coefficient for Total Ni	rogen			
θ.τρ	-	0.986	Median Temp coefficient for Total Ph	osphorus			
Т	°C	8	Average operating temperature				
No. of treatment stages	_	3					
P	-	6	For one treatment stage i.e. 1 cell in	eries/three treatment stages i.e 3 c	ells in series - P is 2 or 6 respe	ectively (conservative value)	
Design Flow	m3/d	488	Input flow rate into here				
Total annual hydraulic	3,	170120					
throughput	m"/yr	178120					
Total wetland area	m ²	5,000	Active cell area (i.e. excluding diving	perms, spreader channels and level	control structures)		
q	m/yr	35.624					
Total Nitrogen							
Amount of remaining	-	17.31	NB. treated discharge from the wetla	nd cannot be less than the backgrou	nd concentrations, as it is not	possible to achieve i.e. backgro	ound conc will always be present
contaminant, Ce - C*	%	73.64					
Treatment efficiency of wetland	%	26.36	% of contaminant removed				
Total Phosphorus							
Amount of remaining	-	1.28	NB. treated discharge from the wetla	nd cannot be less than the backgrou	nd concentrations, as it is not	possible to achieve i.e. backgro	ound conc will always be present
contaminant, Ce - C*	%	76.01					
Treatment efficiency of wetland	%	23.99	% of contaminant removed				

			PROJECT No:	3019260	2		
-	ARUADIS	CALCULATIONS	GBA:	Resilienc	e - Water		
CLIENT:	Corodigion County Co	uncil	REVISION:	P01			
	Cerealgion County Co	diicii	AUTHOR:	RG			
PROJECT:	Wotland Sitos Toifi V	Votlands	CHECKER:	EBP			
	Wetianu Sites - Tein V	venanus	APPROVER:	0			
SUBJECT:	Brocoss Design Calcul	ations Adnar	DATE:	45259			
	Process Design Calcul	ations - Aupai	DOC. No:	0			
SECTION:	References		SHEET:	4	OF	4	

bnstructed Wetland Design & Specification.pdf

The 'Tanks In Series' (TIS) model assumes that the wetland behaves like a treatment plant with a number of completely mixed tanks connected in series, whereby the contaminant is reduced in each tank. This model considers the concentration of the contaminant (C), the background concentration (C*), the rate of reduction of the contaminant over time (rate coefficient 'k', m/d) and the hydraulic parameter (N = no. of tanks in series). It is an improvement on the PPD model, as N is considered to be a finite number (for plug flow, N = ∞ which is not achievable). However, the TIS model assumes the reduction of a single compound through a treatment wetland, whereas many contaminants such as TN and TP are mixtures of contaminants that break down at different rates. The mixture becomes *weathered*, which is a term used to describe the selective stripping of light volatile materials upon exposure to outdoor environments. Observed weathering behaviour in real wetland situations may be represented by the TIS model is known as the P-k-C* model and is defined to be as follows (Kadlec & Wallace 2009):

$$\frac{C_{e} - C^{*}}{C_{i} - C^{*}} = \left[\begin{array}{c} 1 + \frac{k}{Pq} \end{array} \right]^{-p}$$

 C_i = Influent concentration of contaminant (mg/l) C_r = Effluent concentration of contaminant (mg/l)

 C^* = Background concentration of contaminant (ing/i) C^* = Background concentration of contaminant (in the wetland water column) (mg/l)

k = Rate coefficient for reduction of contaminant (m/yr)

P = Apparent no. of tanks in series (PTIS – dimensionless)

q = Hydraulic loading rate (m/yr)

k - C*

*Wetland Feasibility, Design and Offsetting (1).pdf

Plug-flow k-C* Model

The plug-flow k-C* model is based on the below equation; large constructed p-control wetlands have been found to fit this description (Kadlec 2016¹¹):

A=(0.0365*Q/k)*In[(Ci-C*)/Ce-C*)]

Where A= Area (ha), Q=design flow (m₃/d), k: apparent rate coefficient (m/year/1), C_i: inlet TP concentration (gP/m3); C*: background Concentration (mgP/I); Ce=Target Effluent Concentration (mg/I)

- (Flows and TP levels modelled are outlined in table 2).
- Co: The target TP concentration for the wetland is 1mg/l.
- C*: The wetland background concentration is estimated at 0.05mg/l.
- k: The apparent rate coefficient used was 12 m/year.

						PROJECT No:	30192602		
	UADIS		CALCUI			GBA:	Resilience -	Water	
CLIENT:	Ceredigion Cou	unty Council				REVISION:	P01		
						AUTHOR:	RG		
PROJECT:	Wetland Sites -	 Teifi Wetland 	S			CHECKER:	EBP		
						APPROVER:			
SUBJECT:	Process Design	Calculations -	Adpar			DATE:	29/11/2023		
	Estimated Q, C	i 4.8 (2021 P p	erformance)			DOC. No:			
SECTION:	Front Sheet					SHEET:	1	OF	4
ISSUE	TOTAL SHEETS	AUTHOR	DATE	CHECKED BY	DATE	APPROVED BY	DATE	СОМІ	MENTS
P01	4	RG	29/11/23	EBP	30/11/23	LV	12/01/23		
							\Box		
DESIGN BASIS	STATEMENT (Inc.	high level des	cription of si	te/process and p	urpose of ca	Iculations)			

ARCADIS		CALCULATIC	DNS	PROJECT No:	30192602 Resilience - Water		
KEY	CLIENT			BEVISION:	P01		
		Ceredigion County Council		AUTHOR:	RG		
Input values	PROJECT:	Watland Sites Taifi Watlands		CHECKER:	EBP		
Calculated values		wetland Sites - Telli Wetlands		APPROVER:	0		
Linked values	SUBJECT:	Process Design Calculations - Adpar		DATE:	29/11/2023		
Assumed values		······································		DOC. No:	0		
Iterated values	SECTION:	P-k-c		SHEET:	2	OF	4
Process Calculations							
Parameter	Unit	Value	References/Comments				
C _{L-TN}	mg/l	25	Influent concentration of Total Nitro	ogen			
C _{i-TP}	mg/l	4.8	Influent concentration of Total Pho	sphorus (2021 P performance)			
C* _{TN}	mg/l	1.5	Background concentration of Total	Nitrogen			
C* _{TP}	mg/l	0.022	Background concentration of Total	Phosphorus			
k _{TN}	m/yr	11.18	Rate coefficient for reduction of Tot	tal Nitrogen			
k _{tp}	m/yr	10	Rate coefficient for reduction of Tot	tal Phosphorus			
k _{20.TN}	m/yr	21.5	Median value rate coefficient for re	duction of Total Nitrogen			
θ.τ.	-	1.056	Median Temp coefficient for Total N	Vitrogen			
θ.π	-	0.986	Median Temp coefficient for Total F	Phosphorus			
т	°C	8	Average operating temperature				
No. of treatment stages	-	3					
P	-	6	For one treatment stage i.e. 1 cell ir	n series/three treatment stages i.e	e 3 cells in series - P is 2 or 6 resp	ectively (conservative value	2)
Design Flow	m3/d	488	Input flow rate into here				
Total annual hydraulic	m ³ /vr	178120					
throughput	111 / yi	1/0120					
Total wetland area	m²	10,000	Active cell area (i.e. excluding diving	g berms, spreader channels and le	evel control structures)		
q	m/yr	17.812					
Total Nitrogen							
Amount of remaining	-	12.94	NB. treated discharge from the wet	land cannot be less than the back	<pre></pre>	t possible to achieve i.e. ba	ackground conc will always be present
contaminant, Ce - C*	%	55.05					
Treatment efficiency of wetland	%	44.95	% of contaminant removed				
Total Phosphorus							
Amount of remaining	-	2.79	NB. treated discharge from the wet	land cannot be less than the back	ground concentrations, as it is no	t possible to achieve i.e. ba	ackground conc will always be present
contaminant, Ce - C*	%	58.47					
Treatment efficiency of wetland	%	41.53	% of contaminant removed				

KEY CLIENT: Ceredigion County Council REVISION: P01 Input values PROJECT: Wetland Sites - Teifi Wetlands AUTHOR: RG Calculated values SUBJECT: Process Design Calculations - Adpar O Assumed values SUBJECT: Process Design Calculations - Adpar DATE: 29/11/2023 SECTION: P-k-c 0	
Imput values AUTHOR: RG Calculated values PROJECT: Wetland Sites - Teifi Wetlands APPROVER: 0 Assumed values SUBJECT: Process Design Calculations - Adpar DATE: 29/11/2023 SECTION: P-k-c 0	
Input values PROJECT: Wetland Sites - Teifi Wetlands CHECKR: EBP Calculated values SUBJECT: Process Design Calculations - Adpar DATE: 29/11/2023 Assumed values SECTION: P-k-c DOC. No: 0 Process Calculations P-k-c 3 OF 4	
Linked values SUBJECT: Process Design Calculations - Adpar DATE: 29/11/2023 Assumed values SECTION: P-k-c DOC. No: 0 Process Calculations P-k-c SHEET: 3 OF 4	
Assumed values Process Design Calculations - Adpar Iterated values SECTION: P-k-c OF Process Calculations	
Iterated values SECTION: P-k-c 3 OF 4 Process Calculations Parameter Unit Value References/Comments	
Process Calculations Parameter Unit Value References/Comments	
Process Calculations Parameter Unit Value References/Comments	
Parameter Unit Value References/Comments	
C _{F™} mg/l 25 Influent concentration of Total Nitrogen	
C* mg/ 4.6 million concentration of total performance)	
C TN IIIg/I I.3 Background concentration of rotal Nitrogen	
k mar 1112 Bate service in the interview of the interview	
k more 215 Modia vulo at a contraction of Table Mitragen	
A Information of the second se	
Part of the second seco	
T C 2 2 Autors constitut framework for a constitut for	
No of treatment stages - 3	
P - 6 For one treatment stage i.e. 1 cell in series/three treatment stages i.e. 3 cells in series - P is 2 or 6 respectively (conservative value)	
Design Flow m3/d 488 Input flow rate into here	
Total annual hydraulic	
throughput III/yr 1/01/0	
Total wetland area m ² 5,000 Active cell area (i.e. excluding diving berms, spreader channels and level control structures)	
q m/yr <u>35.624</u>	
Total Nitrogen	
Amount of remaining - 17.31 NB. treated discharge from the wetland cannot be less than the background concentrations, as it is not possible to achieve i.e. background conc will always	be present
contaminant, Ce - C* % 73.64	
Treatment efficiency of wetland % 26.36 % of contaminant removed	
Amount of remaining	: he present
containinant, Ce - C* % 76.01	oc present
Treatment efficiency of wetland % 23.99 % of contaminant removed	

			PROJECT No:	3019260	2		
-	ARUADIS	CALCULATIONS	GBA:	Resilienc	e - Water		
CLIENT:	Corodigion County Co	uncil	REVISION:	P01			
	Cerealgion County Co	diicii	AUTHOR:	RG			
PROJECT:	Wotland Sitos Toifi V	Votlands	CHECKER:	EBP			
	Wetianu Sites - Tein V	venanus	APPROVER:	0			
SUBJECT:	Brocoss Design Calcul	ations Adnar	DATE:	45259			
	Process Design Calcul	ations - Aupai	DOC. No:	0			
SECTION:	References		SHEET:	4	OF	4	

bnstructed Wetland Design & Specification.pdf

The 'Tanks In Series' (TIS) model assumes that the wetland behaves like a treatment plant with a number of completely mixed tanks connected in series, whereby the contaminant is reduced in each tank. This model considers the concentration of the contaminant (C), the background concentration (C*), the rate of reduction of the contaminant over time (rate coefficient 'k', m/d) and the hydraulic parameter (N = no. of tanks in series). It is an improvement on the PFD model, as N is considered to be a finite number (for plug flow, N = ∞ which is not achievable). However, the TIS model assumes the reduction of a single compound through a treatment wetland, whereas many contaminants such as TN and TP are mixtures of contaminants that break down at different rates. The mixture becomes *weathered*, which is a term used to describe the selective stripping of light volatile materials upon exposure to outdoor environments. Observed weathering behaviour in real wetland situations may be represented by the TIS model, wherein the parameter values are relaxed to become fitting parameters. This 'relaxed' TIS model is known as the P-k-C* model and is defined to be a follows (Kadlec & Wallace 2009):

$$\frac{C_{e} - C^{*}}{C_{i} - C^{*}} = \left[\begin{array}{c} 1 + \frac{k}{Pq} \end{array} \right]^{P}$$

 C_i = Influent concentration of contaminant (mg/l)

- $C_e = Effluent concentration of contaminant (mg/l) C^* = Background concentration of contaminant (in the wetland water column) (mg/l)$
- C* = Background concentration of contaminant (in the wetland water column) (mg/l k = Rate coefficient for reduction of contaminant (m/yr)
- P = Apparent no. of tanks in series (*P*TIS dimensionless)

q = Hydraulic loading rate (m/yr)

k - C* modelling *Wetland Feasibility, Design and Offsetting (1).pdf

Plug-flow k-C* Model

The plug-flow k-C* model is based on the below equation; large constructed p-control wetlands have been found to fit this description (Kadlec 2016¹¹):

A=(0.0365*Q/k)*In[(Ci-C*)/Ce-C*)]

Where A= Area (ha), Q=design flow (m₃/d), k: apparent rate coefficient (m/year/1), C:: inlet TP concentration (gP/m3); C*: background Concentration (mgP/I); Ce=Target Effluent Concentration (mg/I)

- (Flows and TP levels modelled are outlined in table 2).
- C_o: The target TP concentration for the wetland is 1mg/l.
- (C*: The wetland background concentration is estimated at 0.05mg/l.
- k: The apparent rate coefficient used was 12 m/year.

Appendix C Refined Wetlands Analysis with P-K-C* Model – Tregaron

						PROJECT No:	30192602		
	UADIS		CALCUI			GBA:	Resilience -	Water	
CLIENT:	Ceredigion Cou	inty Council				REVISION:	P01		
						AUTHOR:	RG		
PROJECT:	Wetland Sites -	 Teifi Wetland 	S			CHECKER:	EBP		
						APPROVER:			
SUBJECT:	Process Design	Calculations -	Tregarron			DATE:	24/11/2023		
	Permitted Q, P	roposed Permi	it			DOC. No:			
SECTION:	Front Sheet					SHEET:	1	OF	4
ISSUE	TOTAL SHEETS	AUTHOR	DATE	CHECKED BY	DATE	APPROVED BY	DATE	СОММ	ENTS
P01	4	RG	29/11/23	EBP	30/11/23	LV	12/01/23		
DESIGN BASIS	STATEMENT (Inc.	high level des	cription of si	te/process and p	urpose of ca	alculations)			

ARCADIS		CALCULATIO	DNS	PROJECT No:	30192602 Besilience - Water			
KEY	CLIENT:			REVISION:	P01			
	-	Ceredigion County Council		AUTHOR:	RG			
Input values	PROJECT:	Wetland Sites - Teifi Wetlands		CHECKER:	EBP			
Calculated values		fredalid Sites Tell freddilds		APPROVER: 0				
Linked values	SUBJECT:	Process Design Calculations - Tregarron	I Contraction of the second	24/11/2023				
Assumed values	SECTION			DUC. NO:	0			
	SECTION.	P-k-c		511221.	2	OF	4	
	_							
Process Calculations								
Parameter	Unit	Value	References/Comments					
Gim	mg/l	25	Influent concentration of Total Nitrog	ren				
CLTP	mg/l	25	Influent concentration of Total Phose	horus (Proposed Permit)				
C* _{TM}	mg/l	1.5	Background concentration of Total Ni	trogen				
C*	mg/l	0.022	Background concentration of Total Ph	nosphorus				
k _{TM}	m/yr	11.18	Bate coefficient for reduction of Total	Nitrogen				
krn	m/yr	10	Bate coefficient for reduction of Total	Phosphorus				
Kanatu	m/yr	21.5	Median value rate coefficient for redu	iction of Total Nitrogen				
θ	-	1.056	Median Temp coefficient for Total Nit	rogen				
θ		0.986	Median Temp coefficient for Total Ph	osphorus				
т	- °C	8		osphorus				
No. of treatment stages	-	3	Average operating temperature					
P	-	6	For one treatment stage i.e. 1 cell in s	eries/three treatment stages i.e	3 cells in series - P is 2 or 6 respe	ectively (conservative valu	ue)	
Design Flow	m3/d	520	Input flow rate into here					
Total annual hydraulic	37	180800						
throughput	m /yr	189800						
Total wetland area	m²	15,000	Active cell area (i.e. excluding diving b	perms, spreader channels and lev	vel control structures)			
q	m/yr	12.65333333						
Total Nitrogen								
Amount of remaining	-	10.31	NB. treated discharge from the wetlar	nd cannot be less than the backg	ground concentrations, as it is no	t possible to achieve i.e. I	background conc will always be present	
contaminant, Ce - C*	%	43.85						
Treatment efficiency of wetland	%	56.15	% of contaminant removed					
Total Phosphorus								
Amount of remaining	-	0.94	NB, treated discharge from the wetlar	nd cannot be less than the backe	round concentrations, as it is no	t possible to achieve i.e. I	background conc will always be present	
contaminant, Ce - C*	%	47.60			,			
Treatment efficiency of wetland	%	52.40	% of contaminant removed					

ARCADIS		CALCULATIO	ONS	PROJECT No:	30192602 Resilience - Water		
KEY	CLIENT			BEVISION:	PO1		
		Ceredigion County Council		AUTHOR	RG		
Input values	PROJECT:	Wetland Cites Taifi Metlanda		CHECKER:	EBP		
Calculated values		wetland sites - Telli Wetlands		APPROVER:	0		
Linked values	SUBJECT:	Process Design Calculations - Tregarron			24/11/2023		
Assumed values		······································			0		
Iterated values	SECTION:	P-k-c		SHEET:	3	OF	4
Process Calculations							
Parameter	Unit	Value	References/Comments				
C.m.	mg/l	25	Influent concentration of Total Nite	ogen			
Ci-m	mg/l	25	Influent concentration of Total Pho	sphorus (Proposed Permit)			
C*	mg/l	15	Background concentration of Total	Nitrogen			
C*	mg/l	0.022	Background concentration of Total	Phosphorus			
C TP	m hrr	0.022	Background concentration of Total	tal Nitrogon			
N _{TN}	111/ yi	11.10	Rate coefficient for reduction of To	tal Nitrogen			
K _{TP}	m/yr	10	Rate coefficient for reduction of To	tal Phosphorus			
K _{20-TN}	m/yr	21.5	Median value rate coefficient for re	eduction of Total Nitrogen			
θ _{-τN}	-	1.056	Median Temp coefficient for Total	Nitrogen			
θ _{-т}	-	0.986	Median Temp coefficient for Total	Phosphorus			
Т	°C	8	Average operating temperature				
No. of treatment stages	-	3					
Р	-	6	For one treatment stage i.e. 1 cell i	n series/three treatment stages i.e	3 cells in series - P is 2 or 6 resp	ectively (conservative val	lue)
Design Flow	m3/d	520	Input flow rate into here				
Total annual hydraulic	m³/vr	189800					
throughput	2						
Total wetland area	m	7,500	Active cell area (i.e. excluding divin	g berms, spreader channels and lev	vel control structures)		
q	m/yr	25.30666667					
Total Nitrogen							
Amount of remaining	-	15.34	NB. treated discharge from the we	land cannot be less than the back	round concentrations, as it is no	t possible to achieve i.e.	background conc will always be present
contaminant, Ce - C*	%	65.29					
Treatment efficiency of wetland	%	34.71	% of contaminant removed				
Total Phoenhorus							
Amount of remaining	-	1 35	NB treated discharge from the we	land cannot be less than the backs	round concentrations as it is no	it nossible to achieve i e	background conc will always be present
contaminant. Ce - C*	%	68.20	the deduce discharge nom the we			repossible to demere her	backs, band cone win analys be present
Treatment efficiency of wetland	%	31.80	% of contaminant removed				

			PROJECT No:	3019260	2		
-	ARUADIS	CALCULATIONS	GBA:	Resilienc	e - Water		
CLIENT:	Corodigion County Co	uncil	REVISION:	P01			
	Cerealgion County Co	dici	AUTHOR:	RG			
PROJECT:	Wotland Sitos Toifi V	Votlands	CHECKER:	EBP			
	Wetianu Sites - Tein V	vetialius	APPROVER:	0			
SUBJECT:	Brocoss Design Calcul	ations Tragarran	DATE:	45254			
	Process Design Calcul	ations - fregation	DOC. No:	0			
SECTION:	References		SHEET:	4	OF	4	

bnstructed Wetland Design & Specification.pdf

The 'Tanks In Series' (TIS) model assumes that the wetland behaves like a treatment plant with a number of completely mixed tanks connected in series, whereby the contaminant is reduced in each tank. This model considers the concentration of the contaminant (C), the background concentration (C*), the rate of reduction of the contaminant over time (rate coefficient 'k', m/d) and the hydraulic parameter (N = no. of tanks in series). It is an improvement on the PFD model, as N is considered to be a finite number (for plug flow, N = ∞ which is not achievable). However, the TIS model assumes the reduction of a single compound through a treatment wetland, whereas many contaminants such as TN and TP are mixtures of contaminants that break down at different rates. The mixture becomes *weathered*, which is a term used to describe the selective stripping of light volatile materials upon exposure to outdoor environments. Observed weathering behaviour in real wetland situations may be represented by the TIS model, wherein the parameter values are relaxed to become fitting parameters. This 'relaxed' TIS model is known as the P-k-C* model and is defined to be as follows (Kadlec & Wallace 2009):

$$\frac{C_e - C^*}{C_i - C^*} = \left[\begin{array}{c} 1 + \frac{k}{Pq} \right]^{-p}$$

C_i = Influent concentration of contaminant (mg/l)

Ce = Effluent concentration of contaminant (mg/l)

- $\label{eq:cs} C^* = \text{Background concentration of contaminant (in the wetland water column) (mg/l)} \\ k = \text{Rate coefficient for reduction of contaminant (m/yr)}$
- P = Apparent no. of tanks in series (PTIS dimensionless)

q = Hydraulic loading rate (m/yr)

k - C* modelling *Wetland Feasibility, Design and Offsetting (1).pdf

Plug-flow k-C* Model

The plug-flow k-C* model is based on the below equation; large constructed p-control wetlands have been found to fit this description (Kadlec 2016¹¹):

A=(0.0365*Q/k)*In[(Ci-C*)/Ce-C*)]

Where A= Area (ha), Q=design flow (m₃/d), k: apparent rate coefficient (m/year/1), C_i: inlet TP concentration (gP/m3); C*: background Concentration (mgP/I); Ce=Target Effluent Concentration (mg/I)

- (Flows and TP levels modelled are outlined in table 2).
- C_o: The target TP concentration for the wetland is 1mg/l.
- C*: The wetland background concentration is estimated at 0.05mg/l.
- k: The apparent rate coefficient used was 12 m/year.

ARCADIS					PROJECT No:	30192602			
			CALCUI			GBA:	Resilience -	Water	
CLIENT:	Ceredigion Cou	unty Council				REVISION:	P01		
						AUTHOR:	RG		
PROJECT:	Wetland Sites -	 Teifi Wetland 	S			CHECKER:	EBP		
						APPROVER:			
SUBJECT:	Process Design	Calculations -	Treggaron			DATE:	24/11/2023		
	Permitted Q, A	ssumed Backs	top/Current 7	ГР		DOC. No:			
SECTION: Front Sheet						SHEET:	1	OF	4
ISSUE	TOTAL SHEETS	AUTHOR	DATE	CHECKED BY	DATE	APPROVED BY	DATE	COMM	√ENTS
P01	4	RG	29/11/23	EBP	30/11/23	LV	12/01/23		
					<u> </u>		<u> </u>		
					<u> </u>				
DESIGN BASIS	STATEMENT (Inc.	high level des	cription of si	te/process and p	urpose of ca	lculations)			

ARCADIS		CALCULATION	NS	PROJECT No:	30192602 Resilience - Water			
KEY	CLIENT:	Corodigion County Council		REVISION:	P01			
		Cerealgion County Council		AUTHOR:	RG			
Input values	PROJECT:	Wetland Sites - Teifi Wetlands		CHECKER:	EBP			
Calculated values			APPROVER:	<u>'ER: 0</u>				
Assumed values	SUBJECT:	Process Design Calculations - Treggaron		DATE:	24/11/2023			
Iterated values	SECTION:			SHEET:				
		P-k-c			2	OF	4	
Process Calculations								
Parameter	Unit	Value	References/Comments					
6	mg/l	25	Influent concentration of Total Nitrog	en.				
C _{LTN}	mg/l	25	Influent concentration of Total Phose	horus (Assumed Backston/Curre	ent TP)			
C*	mg/l	1.5	Background concentration of Total Ni	trogen				
C*	mg/l	0.022	Background concentration of Total Ph	iosphorus				
- 1P k-su	m/vr	11.18	Rate coefficient for reduction of Total	Nitrogen				
	m/yr	10	Bate coefficient for reduction of Total	Phosphorus				
Kan	m/yr	21.5	Median value rate coefficient for redu	rtion of Total Nitrogen				
A	, y.	1 056	Median Temp coefficient for Total Nit	rogen				
θ		0.986	Median Temp coefficient for Total Pho	horus				
т	°C	8	Average operating temperature	ospilor us				
No. of treatment stages	-	3	werdge operating temperature					
P	-	6	For one treatment stage i.e. 1 cell in s	eries/three treatment stages i.e	3 cells in series - P is 2 or 6 resp	ectively (conservative valu	ue)	
Design Flow	m3/d	520	Input flow rate into here					
Total annual hydraulic	³ /	199900						
throughput	ffi /yr	189800						
Total wetland area	m²	15,000	Active cell area (i.e. excluding diving b	erms, spreader channels and le	vel control structures)			
q	m/yr	12.65333333						
Total Nitrogen								
Amount of remaining	-	10.31	NB. treated discharge from the wetlar	nd cannot be less than the back	ground concentrations, as it is no	t possible to achieve i.e. b	background conc will always be present	
contaminant, Ce - C*	%	43.85						
Treatment efficiency of wetland	%	56.15	% of contaminant removed					
Total Phosphorus								
Amount of remaining	-	2.37	NB. treated discharge from the wetlar	nd cannot be less than the back	ground concentrations, as it is no	t possible to achieve i.e. b	background conc will always be present	
contaminant, Ce - C*	%	47.60						
Treatment efficiency of wetland	%	52.40	% of contaminant removed					

ARCADIS		CALCULATIO	INS	PROJECT No:	30192602 Resilience - Water				
KEY	CLIENT:			REVISION:	P01				
	-	Ceredigion County Council		AUTHOR:	RG				
Input values	PROJECT:	Wetland Sites - Teifi Wetlands		CHECKER:	EBP				
Calculated values				APPROVER:	OVER: 0				
Linked values	SUBJECT:	Process Design Calculations - Treggaron		DATE:	24/11/2023				
Assumed values	SECTION				U				
	SECTION.	P-k-c		SHEET.	3	OF	4		
	_								
Process Calculations									
Parameter	Unit	Value	References/Comments						
CLITM	mg/l	25	Influent concentration of Total Nitrog	en					
C _{i-TP}	mg/l	5	Influent concentration of Total Phosp	horus (Assumed Backstop/Currer	nt Tp))				
С*ты	mg/l	1.5	Background concentration of Total Ni	trogen					
C* _{тр}	mg/l	0.022	Background concentration of Total Ph	losphorus					
k _{TN}	m/yr	11.18	Rate coefficient for reduction of Total	Nitrogen					
k _{TP}	m/vr	10	Rate coefficient for reduction of Total	Phosphorus					
K20 TN	m/yr	21.5	Median value rate coefficient for redu	iction of Total Nitrogen					
θ m	-	1.056	Median Temp coefficient for Total Nit	rogen					
e-in e-in	-	0.986	Median Temp coefficient for Total Pho	osphorus					
Т	°C	8	Average operating temperature	sspirol us					
No. of treatment stages	-	3	······································						
Р	-	6	For one treatment stage i.e. 1 cell in s	eries/three treatment stages i.e 3	3 cells in series - P is 2 or 6 resp	ectively (conservative valu	ue)		
Design Flow	m3/d	520	Input flow rate into here	_					
Total annual hydraulic		189800							
throughput	III /yr	185800							
Total wetland area	m²	7,500	Active cell area (i.e. excluding diving b	erms, spreader channels and lev	el control structures)				
q	m/yr	25.30666667							
Total Nitrogen									
Amount of remaining	-	15.34	NB. treated discharge from the wetlar	nd cannot be less than the backg	round concentrations, as it is no	ot possible to achieve i.e. I	background conc will always be present		
contaminant, Ce - C*	%	65.29							
Treatment efficiency of wetland	%	34.71	% of contaminant removed						
Total Phosphorus									
Amount of remaining	-	3.40	NB. treated discharge from the wetlar	nd cannot be less than the backg	round concentrations, as it is n	ot possible to achieve i.e. I	background conc will always be present		
contaminant, Ce - C*	%	68.20	the reaced abenation for the wetter				g		
Treatment efficiency of wetland	%	31.80	% of contaminant removed						

			PROJECT No:	3019260	2		
-	ARUADIS	CALCULATIONS	GBA:	Resilienc	e - Water		
CLIENT:	Corodigion County Co	uncil	REVISION:	P01			
	Cerealgion County Co	dici	AUTHOR:	RG			
PROJECT: Wetland Sites - Teifi)		Votlands	CHECKER:	EBP			
	Wetianu Sites - Tein V	vetialius	APPROVER:	0			
SUBJECT:	Brocoss Design Calcul	ations Traggaran	DATE:	45254			
	Process Design Calcul	ations - Treggaron	DOC. No:	0			
SECTION:	References		SHEET:	4	OF	4	

bnstructed Wetland Design & Specification.pdf

The 'Tanks In Series' (TIS) model assumes that the wetland behaves like a treatment plant with a number of completely mixed tanks connected in series, whereby the contaminant is reduced in each tank. This model considers the concentration of the contaminant (C), the background concentration (C*), the rate of reduction of the contaminant over time (rate coefficient 'k', m/d) and the hydraulic parameter (N = no. of tanks in series). It is an improvement on the PFD model, as N is considered to be a finite number (for plug flow, N = ∞ which is not achievable). However, the TIS model assumes the reduction of a single compound through a treatment wetland, whereas many contaminants such as TN and TP are mixtures of contaminants that break down at different rates. The mixture becomes *weathered*, which is a term used to describe the selective stripping of light volatile materials upon exposure to outdoor environments. Observed weathering behaviour in real wetland situations may be represented by the TIS model, wherein the parameter values are relaxed to become fitting parameters. This 'relaxed' TIS model is known as the P-k-C* model and is defined to be as follows (Kadlec & Wallace 2009):

$$\frac{C_{e} - C^{*}}{C_{i} - C^{*}} = \left[\begin{array}{c} 1 + \frac{k}{Pq} \right]^{P}$$

C_i = Influent concentration of contaminant (mg/l)

$$\label{eq:ce} \begin{split} C_e &= \text{Effluent concentration of contaminant (mg/l)} \\ C^* &= \text{Background concentration of contaminant (in the wetland water column) (mg/l)} \end{split}$$

k = Rate coefficient for reduction of contaminant (m/yr)

P = Apparent no. of tanks in series (PTIS – dimensionless)

q = Hydraulic loading rate (m/yr)

k - C* modelling *Wetland Feasibility, Design and Offsetting (1).pdf

Plug-flow k-C* Model

The plug-flow k-C* model is based on the below equation; large constructed p-control wetlands have been found to fit this description (Kadlec 2016¹¹):

A=(0.0365*Q/k)*In[(Ci-C*)/Ce-C*)]

Where A= Area (ha), Q=design flow (m₃/d), k: apparent rate coefficient (m/year/1), C_i: inlet TP concentration (gP/m3); C*: background Concentration (mgP/I); Ce=Target Effluent Concentration (mg/I)

- (Flows and TP levels modelled are outlined in table 2).
- C_o: The target TP concentration for the wetland is 1mg/l.
- C*: The wetland background concentration is estimated at 0.05mg/l.
- k: The apparent rate coefficient used was 12 m/year.

			CALCU			PROJECT No:	30192602	
			CALCUI	LATIONS		GBA:	Resilience -	Water
CLIENT:	Ceredigion Cou	unty Council				REVISION:	P01	
						AUTHOR:	RG	
PROJECT:	Wetland Sites -	- Teifi Wetland	S			CHECKER:	EBP	
						APPROVER:	<u> </u>	
SUBJECT: Process Design Calculations - Tregaron						DATE:	24/11/2023	
Estimated Q, proposed Permit						DOC. No:		
SECTION:	CTION: Front Sheet						1	OF 4
ISSUE	TOTAL SHEETS	AUTHOR	DATE	CHECKED BY	DATE	APPROVED BY	DATE	COMMENTS
P01	4	RG	29/11/23	EBP	30/11/23	LV	12/01/23	
DESIGN BASIS	STATEMENT (Inc.	bigh level des	crintion of si	te/process and n	urpose of ca	leulations)		
		ingineter acc		.c/process and p				

ARCADIS		CALCULATIO	DNS	PROJECT No:	30192602 Besilience - Water		
KEY	CLIENT:			REVISION:	P01		
		Ceredigion County Council		AUTHOR:	RG		
Input values	PROJECT:	Wetland Sites - Teifi Wetlands		CHECKER:	EBP		
Calculated values				APPROVER:	0		
Linked values	SUBJECT:	Process Design Calculations - Tregaron		DATE:	24/11/2023		
Assumed values	SECTION			DOC. NO:	0		
	SECTION.	P-k-c		SHEET.	2	OF	4
Process Calculations							
Parameter	Unit	Value	References/Comments				
CLITM	mg/l	25	Influent concentration of Total Nitro	ogen			
C _{i-TP}	mg/l	2	Influent concentration of Total Pho	sphorus (Proposed Permit)			
С*ты	mg/l	1.5	Background concentration of Total	Nitrogen			
C* _{TP}	mg/l	0.022	Background concentration of Total	Phosphorus			
k _{TN}	m/yr	11.18	Rate coefficient for reduction of Tot	al Nitrogen			
k _{τp}	m/vr	10	Rate coefficient for reduction of Tot	al Phosphorus			
k _{20.TN}	m/yr	21.5	Median value rate coefficient for re	duction of Total Nitrogen			
θ _{-τN}	-	1.056	Median Temp coefficient for Total N	litrogen			
θ-τρ	-	0.986	Median Temp coefficient for Total P	hosphorus			
т	°C	8	Average operating temperature				
No. of treatment stages	-	3					
Р	-	6	For one treatment stage i.e. 1 cell in	series/three treatment stages i.e	3 cells in series - P is 2 or 6 respe	ctively (conservative val	ue)
Design Flow	m3/d	218	Input flow rate into here				
Total annual hydraulic	m ³ /vr	79570					
throughput							
Total wetland area	m ²	15,000	Active cell area (i.e. excluding diving	g berms, spreader channels and le	vel control structures)		
q	m/yr	5.304666667					
Total Nitrogen							
Amount of remaining	-	3.86	NB. treated discharge from the wet	and cannot be less than the back	ground concentrations, as it is no	t possible to achieve i.e.	background conc will always be present
contaminant, Ce - C*	%	16.43					
Treatment efficiency of wetland	%	83.57	% of contaminant removed				
Total Phosphorus							
Amount of remaining	-	0.38	NB. treated discharge from the wet	and cannot be less than the back	ground concentrations, as it is no	t possible to achieve i.e.	background conc will always be present
contaminant, Ce - C*	%	19.41	2 • • • • •				- ,
Treatment efficiency of wetland	%	80.59	% of contaminant removed				

ARCADIS		CALCULATIO	INS	PROJECT No:	30192602 Resilience - Water		
KEY	CLIENT:			REVISION:	P01		
	-	Ceredigion County Council		AUTHOR:	RG		
Input values	PROJECT:	Wetland Sites - Teifi Wetlands		CHECKER:	EBP		
Calculated values				APPROVER:	0		
Linked values	SUBJECT:	Process Design Calculations - Tregaron	DATE:	24/11/2023			
Iterated values	SECTION			DUC. NO: SHEFT:	0		
	SECTION.	P-k-c		SHEET.	3	OF	4
Process Calculations							
Parameter	Unit	Value	References/Comments				
C.m.	mg/l	25	Influent concentration of Total Nitros	ion			
	mg/l	25	Influent concentration of Total Phose	horus (Proposed Permit)			
C* ₁₁₁	mg/l	1.5	Background concentration of Total N	itrogen			
C*170	mg/l	0.022	Background concentration of Total P	nosphorus			
k _{TM}	m/vr	11.18	Bate coefficient for reduction of Tota	Nitrogen			
k _{rn}	m/yr	10	Rate coefficient for reduction of Tota	l Phosphorus			
Kao TN	m/yr	21.5	Median value rate coefficient for redu	uction of Total Nitrogen			
θ m	-	1.056	Median Temp coefficient for Total Ni	trogen			
e-in e-in	-	0.986	Median Temp coefficient for Total Ph	osphorus			
т	°C	8	Average operating temperature	osphoras			
No. of treatment stages	-	3	Werdge operating temperature				
P	-	6	For one treatment stage i.e. 1 cell in	series/three treatment stages i.e	3 cells in series - P is 2 or 6 resp	ectively (conservative val	ue)
Design Flow	m3/d	218	Input flow rate into here				
Total annual hydraulic	³ /	79570					
throughput	m /yr	79370					
Total wetland area	m²	7,500	Active cell area (i.e. excluding diving	berms, spreader channels and lev	el control structures)		
q	m/yr	10.60933333					
Total Nitrogen							
Amount of remaining	-	8.90	NB. treated discharge from the wetla	nd cannot be less than the backg	round concentrations, as it is no	t possible to achieve i.e.	background conc will always be present
contaminant, Ce - C*	%	37.87					
Treatment efficiency of wetland	%	62.13	% of contaminant removed				
Total Phoenhorus							
Amount of remaining	-	0.82	NB treated discharge from the wetla	nd cannot he less than the backs	round concentrations as it is po	t nossible to achieve i e	background conc will always be present
contaminant. Ce - C*	%	41.67	no. a cated discharge nom the weta	na cannor be less than the backg		possible to demete her	seeks our a cone inn annays se present
Treatment efficiency of wetland	%	58.33	% of contaminant removed				

			PROJECT No:	3019260	2		
	ARUADIS	CALCULATIONS	GBA:	Resilienc	e - Water		
CLIENT:	Corodigion County Co	uncil	REVISION:	P01			
	Cerealgion County Co	unen	AUTHOR:	RG			
PROJECT:	Wotland Sitos Toifi V	Votlands	CHECKER:	EBP			
	Wetianu Sites - Tenri v	vellands	APPROVER:	0			
SUBJECT:	Drogoss Dosign Coloul	ations Traggrap	DATE:	45254			
	Process Design Calcul	ations - Tregaron	DOC. No:	0			
SECTION:	References		SHEET:	4	OF	4	

bnstructed Wetland Design & Specification.pdf

The 'Tanks In Series' (TIS) model assumes that the wetland behaves like a treatment plant with a number of completely mixed tanks connected in series, whereby the contaminant is reduced in each tank. This model considers the concentration of the contaminant (C), the background concentration (C*), the rate of reduction of the contaminant over time (rate coefficient 'k', m/d) and the hydraulic parameter (N = no. of tanks in series). It is an improvement on the PFD model, as N is considered to be a finite number (for plug flow, N = ∞ which is not achievable). However, the TIS model assumes the reduction of a single compound through a treatment wetland, whereas many contaminants such as TN and TP are mixtures of contaminants that break down at different rates. The mixture becomes *weathered*, which is a term used to describe the selective stripping of light volatile materials upon exposure to outdoor environments. Observed weathering behaviour in real wetland situations may be represented by the TIS model, wherein the parameter values are relaxed to become fitting parameters. This 'relaxed' TIS model is known as the P-k-C* model and is defined to be as follows (Kadlec & Wallace 2009):

C _e - C*		1+	k	- <i>P</i>
C _i - C*	-		Pq	

 C_i = Influent concentration of contaminant (mg/l)

 $\label{eq:ce} C_e = \text{Effluent concentration of contaminant (mg/l)} \\ C^* = \text{Background concentration of contaminant (in the wetland water column) (mg/l)}$

k = Rate coefficient for reduction of contaminant (m/yr)

P = Apparent no. of tanks in series (PTIS – dimensionless)

q = Hydraulic loading rate (m/yr)

k - C* modelling *Wetland Feasibility, Design and Offsetting (1).pdf

Plug-flow k-C* Model

The plug-flow k-C* model is based on the below equation; large constructed p-control wetlands have been found to fit this description (Kadlec 2016¹¹):

A=(0.0365*Q/k)*In[(Ci-C*)/Ce-C*)]

Where A= Area (ha), Q=design flow (m₃/d), k: apparent rate coefficient (m/year/1), C_i: inlet TP concentration (gP/m3); C*: background Concentration (mgP/I); Ce=Target Effluent Concentration (mg/I)

- (Flows and TP levels modelled are outlined in table 2).
- C_o: The target TP concentration for the wetland is 1mg/l.
- C*: The wetland background concentration is estimated at 0.05mg/l.
- k: The apparent rate coefficient used was 12 m/year.

ARCADIS					PROJECT NO:	30192602			
		CALCU			GBA:	Resilience -	Water		
Ceredigion Cou	unty Council				REVISION:	P01			
					AUTHOR:	RG			
Wetland Sites -	- Teifi Wetland	5			CHECKER:	EBP			
					APPROVER:				
Process Design	Calculations -	Tregaron			DATE:	24/11/2023			
Estimated Q, a	ssumed Backst	op/current T	Р		DOC. No:				
ECTION: Front Sheet						1	OF	4	
TOTAL SHEETS	AUTHOR	DATE	CHECKED BY	DATE	APPROVED BY	DATE	COMN	/ENTS	
4	RG	29/11/23	EBP	30/11/23	LV	12/01/23			
TATEMENT (Inc.	high level des	cription of sit	te/process and p	urpose of ca	lculations)				
	Ceredigion Cou Wetland Sites Process Design Estimated Q, a Front Sheet TOTAL SHEETS 4 A A TEMENT (Inc.	Ceredigion County Council Wetland Sites - Teifi Wetlands Process Design Calculations - Estimated Q, assumed Backst Front Sheet TOTAL SHEETS AUTHOR 4 RG Image: Construction of the structure Author A RG	CALCOU Ceredigion County Council Wetland Sites - Teifi Wetlands Process Design Calculations - Tregaron Estimated Q, assumed Backstop/current T Front Sheet 1 4 RG 29/11/23 4 RG 29/11/23	CALCULATIONS Ceredigion County Council Wetland Sites - Teifi Wetlands Process Design Calculations - Tregaron Estimated Q, assumed Backstop/current TP Front Sheet TOTAL AUTHOR DATE CHECKED BY 4 RG 29/11/23 EBP Image: Checked By A RG 29/11/23 From Sheet Image: Checked By A RG 29/11/23 EBP Image: Checked By A RG 29/11/23 EMENT (Inc. high level description of site/process and p	CALCULATIONS Ceredigion County Council Wetland Sites - Teifi Wetlands Process Design Calculations - Tregaron Estimated Q, assumed Backstop/current TP Front Sheet TOTAL AUTHOR DATE CHECKED BY DATE 4 RG 29/11/23 EBP 30/11/23 4 RG 29/11/23 EBP 30/11/23 4 RG 1000000000000000000000000000000000000	Caredigion County Council REVISION: Wetland Sites - Teifi Wetlands CHECKER: Process Design Calculations - Tregaron DATE: Estimated Q, assumed Backstop/current TP DOC. No: Front Sheet SHEET: TOTAL AUTHOR DATE CHECKED BY DATE APPROVED BY 4 RG 29/11/23 EBP 30/11/23 LV LV Image: Checken Difference Image: Checken Difference Image: Checken Difference AUTHOR DATE CHECKED BY DATE APPROVED BY 4 RG 29/11/23 EBP 30/11/23 LV	CALCULATIONS GBA: Resilience -1 Ceredigion County Council REVISION: RG Wetland Sites - Teifi Wetlands CHECKER: EBP APPROVER: Process Design Calculations - Tregaron DATE: 24/11/2023 Estimated Q, assumed Backstop/current TP DOC. No: SHEET: 1 TOTAL AUTHOR DATE CHECKED BY DATE APPROVED BY DATE 4 RG 29/11/23 EBP 30/11/23 LV 12/01/23 4 RG 29/11/23 EBP 30/11/23 LV	CALCULATIONS GBA: Resilience - Water Ceredigion County Council REVISION: P01 AUTHOR: RG Wetland Sites - Teiff Wetlands CHECKER: EBP Process Design Calculations - Tregaron DATE: 24/11/2023 Estimated Q, assumed Backstop/current TP DC. No: Front Sheet TOTAL AUTHOR DATE CHECKED BY DATE 4 RG 29/11/23 EBP 30/11/23 LV 12/01/23 4 RG 29/11/23 EBP 30/11/23 LV 12/01/23	

ARCADIS		CALCULATIO	NS	PROJECT No:	30192602 Resilience - Wate	30192602 Besilience - Water				
КЕҮ	CLIENT: Ceredigion County Council			REVISION:	P01					
				AUTHOR:	RG					
Input values	PROJECT: Wetland Sites - Teifi Wetlands SUBJECT: Process Design Calculations - Tregaron			CHECKER:	EBP					
Calculated values				APPROVER:	APPROVER: 0					
Assumed values				DATE: 24/11/2023						
Iterated values	SECTION:			SHEET:	DUC. NO: 0					
		Р-к-с		-	2	OF	4			
Process Calculations										
Parameter	Unit	Value	References/Comments							
CLTN	mg/l	25	Influent concentration of Total Nitro	gen						
C _{i-TP}	mg/l	5	Influent concentration of Total Phos	Influent concentration of Total Phosphorus (assumed Backstopm/current TP)						
C* _{TN}	mg/l	1.5	Background concentration of Total N	Background concentration of Total Nitrogen						
C* _{TP}	mg/l	0.022	Background concentration of Total Phosphorus							
k _{tn}	m/yr	11.18	Rate coefficient for reduction of Total Nitrogen							
k _{TP}	m/yr	10	Rate coefficient for reduction of Total Phosphorus							
k _{20-TN}	m/yr	21.5	Median value rate coefficient for reduction of Total Nitrogen							
θ _{-τN}	-	1.056	Median Temp coefficient for Total Nitrogen							
θ	-	0.986	Median Temp coefficient for Total Phosphorus							
Т	°C	8	Average operating temperature							
No. of treatment stages	-	3								
Р	-	6	For one treatment stage i.e. 1 cell in series/three treatment stages i.e 3 cells in series - P is 2 or 6 respectively (conservative value)				lue)			
Design Flow	m3/d	218	Input flow rate into here							
Total annual hydraulic	m³/yr	79570								
Total wotland area	²	15.000	Active call area (i.e. avaluating diving barner, careador changels and laval control (structures)							
Total wettand area	H1	5,000	Active cell area (i.e. excluding diving berms, spreader channels and level control structures)							
q	ni/yr	5.304666667								
Total Nitrogen										
Amount of remaining	-	3.86	NB. treated discharge from the wetla	and cannot be less than the back	ground concentrations, as it is r	ot possible to achieve i.e.	background conc will always be present			
contaminant, Ce - C*	%	16.43								
Treatment efficiency of wetland	%	83.57	% of contaminant removed							
Tatal Dhaanhamu										
Amount of remaining		0.97	NR treated discharge from the wet	and cannot be less than the back	around concentrations as it is r	ot possible to achieve i e	background concivill always be present			
contaminant. Ce - C*	- %	19 41	ND. Treated discharge HOIII the Wells	and carnior be less than the back	Serveria concentrations, dS It IS I	or possible to achieve i.e.	background cone will always be present			
Treatment efficiency of wetland	%	80.59	% of contaminant removed							

ARCADIS		CALCULATIO	DNS	PROJECT No:	30192602 Resilience - Water	30192602 Reciliance - Water				
KEY	CLIENT: Ceredigion County Council			REVISION:	P01					
				AUTHOR:	RG	RG				
Input values PROJECT: Calculated values		Wetland Sites - Teifi Wetlands		CHECKER:	EBP					
				APPROVER:	0					
Linked values	SUBJECT: Process Design Calcula		1 Calculations - Tregaron		0					
Assumed values	SECTION			DUC. NO:	U					
	SECTION: P-k-c			SHEET.	3	OF	4			
	_									
Process Calculations										
Parameter	Unit	Value	References/Comments							
Grav	mg/l	25	Influent concentration of Total Nitrog	zen						
Citre	mg/l	5	Influent concentration of Total Phosp	Influent concentration of Total Phosohorus (Assumed Backstop/current TP)						
С*ты	mg/l	1.5	Background concentration of Total Ni	Background concentration of Total Nitrogen						
С*тр	mg/l	0.022	Background concentration of Total Phosphorus							
k _{TN}	m/vr	11.18	Rate coefficient for reduction of Total Nitrogen							
k _{rn}	m/yr	10	Bate coefficient for reduction of Trial Phosphorus							
	m/yr	21 5	Median value rate coefficient for reduction of Total Nitrogen							
θ	-	1 056	Median Temp coefficient for Total Nit	Median Pane contracts for Total Nitrogen						
θ		0.986	Median remp conficient for Total Photophorus							
Т	°C	8	Average negative temperature							
No. of treatment stages	-	3								
Р	-	6	For one treatment stage i.e. 1 cell in series/three treatment stages i.e 3 cells in series - P is 2 or 6 respectively (conservative value)				ue)			
Design Flow	m3/d	218	Input flow rate into here	_						
Total annual hydraulic	³ /	79570								
throughput	rri /yr	/33/0								
Total wetland area	m²	7,500	Active cell area (i.e. excluding diving berms, spreader channels and level control structures)							
q	m/yr	10.60933333								
Total Nitrogen										
Amount of remaining	-	8.90	NB. treated discharge from the wetla	nd cannot be less than the back	ground concentrations, as it is no	ot possible to achieve i.e. I	background conc will always be present			
contaminant, Ce - C*	%	37.87								
Treatment efficiency of wetland	%	62.13	% of contaminant removed							
Total Phosphorus										
Amount of remaining	-	2.07	NB. treated discharge from the wetla	nd cannot be less than the back	ground concentrations, as it is no	ot possible to achieve i.e. I	background conc will always be present			
contaminant, Ce - C*	%	41.67								
Treatment efficiency of wetland	%	58.33	% of contaminant removed							

			PROJECT No:	No: 30192602			
/-	ARUADIS	CALCOLATIONS	GBA:	Resilienc			
CLIENT:	Caradigian County Council		REVISION:	P01			
	Cerealgion County Co	AUTHOR:	RG				
PROJECT:	Wotland Sitos Toifi V	Notland Sites Taifi Watlands					
wellallu Siles - Telli Wellallus			APPROVER:	0			
SUBJECT:	Brocoss Design Calcul	ations Tragaron	DATE:	45254			
	Process Design Calcul						
SECTION:	References		SHEET:	4	OF	4	

bnstructed Wetland Design & Specification.pdf

The 'Tanks In Series' (TIS) model assumes that the wetland behaves like a treatment plant with a number of completely mixed tanks connected in series, whereby the contaminant is reduced in each tank. This model considers the concentration of the contaminant (C), the background concentration (C*), the rate of reduction of the contaminant over time (rate coefficient 'k', m/d) and the hydraulic parameter (N = no. of tanks in series). It is an improvement on the PFD model, as N is considered to be a finite number (for plug flow, N = ∞ which is not achievable). However, the TIS model assumes the reduction of a single compound through a treatment wetland, whereas many contaminants such as TN and TP are mixtures of contaminants that break down at different rates. The mixture becomes *weathered*, which is a term used to describe the selective stripping of light volatile materials upon exposure to outdoor environments. Observed weathering behaviour in real wetland situations may be represented by the TIS model, wherein the parameter values are relaxed to become fitting parameters. This 'relaxed' TIS model is known as the P-k-C* model and is defined to be as follows (Kadlec & Wallace 2009):

$$\frac{C_{e} - C^{*}}{C_{i} - C^{*}} = \left[\begin{array}{c} 1 + \frac{k}{Pq} \right]^{P}$$

C_i = Influent concentration of contaminant (mg/l)

- C_e = Effluent concentration of contaminant (mg/l)
- C^* = Background concentration of contaminant (in the wetland water column) (mg/l)
- k = Rate coefficient for reduction of contaminant (m/yr) P = Apparent no. of tanks in series (PTIS – dimensionless)

q = Hydraulic loading rate (m/yr)

k - C* modelling *Wetland Feasibility, Design and Offsetting (1).pdf

Plug-flow k-C* Model

The plug-flow k-C* model is based on the below equation; large constructed p-control wetlands have been found to fit this description (Kadlec 2016¹¹):

A=(0.0365*Q/k)*In[(Ci-C*)/Ce-C*)]

Where A= Area (ha), Q=design flow (m₃/d), k: apparent rate coefficient (m/year/1), C:: inlet TP concentration (gP/m3); C*: background Concentration (mgP/I); Ce=Target Effluent Concentration (mg/I)

- (Flows and TP levels modelled are outlined in table 2).
- C_o: The target TP concentration for the wetland is 1mg/l.
- C*: The wetland background concentration is estimated at 0.05mg/l.
- k: The apparent rate coefficient used was 12 m/year.

Arcadis (UK) Limited

80 Fenchurch Street London EC3M 4BY United Kingdom

T: +44 (0)20 7812 2000

arcadis.com